Properties

Label 2-595-1.1-c1-0-15
Degree $2$
Conductor $595$
Sign $-1$
Analytic cond. $4.75109$
Root an. cond. $2.17970$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.24·2-s − 1.44·3-s + 3.04·4-s + 5-s + 3.24·6-s − 7-s − 2.35·8-s − 0.911·9-s − 2.24·10-s + 0.780·11-s − 4.40·12-s − 1.64·13-s + 2.24·14-s − 1.44·15-s − 0.801·16-s + 17-s + 2.04·18-s + 7.09·19-s + 3.04·20-s + 1.44·21-s − 1.75·22-s − 8.70·23-s + 3.40·24-s + 25-s + 3.69·26-s + 5.65·27-s − 3.04·28-s + ⋯
L(s)  = 1  − 1.58·2-s − 0.834·3-s + 1.52·4-s + 0.447·5-s + 1.32·6-s − 0.377·7-s − 0.833·8-s − 0.303·9-s − 0.710·10-s + 0.235·11-s − 1.27·12-s − 0.455·13-s + 0.600·14-s − 0.373·15-s − 0.200·16-s + 0.242·17-s + 0.482·18-s + 1.62·19-s + 0.681·20-s + 0.315·21-s − 0.373·22-s − 1.81·23-s + 0.695·24-s + 0.200·25-s + 0.724·26-s + 1.08·27-s − 0.576·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(595\)    =    \(5 \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(4.75109\)
Root analytic conductor: \(2.17970\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 595,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 - T \)
good2 \( 1 + 2.24T + 2T^{2} \)
3 \( 1 + 1.44T + 3T^{2} \)
11 \( 1 - 0.780T + 11T^{2} \)
13 \( 1 + 1.64T + 13T^{2} \)
19 \( 1 - 7.09T + 19T^{2} \)
23 \( 1 + 8.70T + 23T^{2} \)
29 \( 1 - 3.34T + 29T^{2} \)
31 \( 1 - 4.02T + 31T^{2} \)
37 \( 1 + 6.33T + 37T^{2} \)
41 \( 1 + 12.4T + 41T^{2} \)
43 \( 1 - 6.94T + 43T^{2} \)
47 \( 1 + 11.9T + 47T^{2} \)
53 \( 1 + 8.51T + 53T^{2} \)
59 \( 1 + 4.66T + 59T^{2} \)
61 \( 1 + 14.3T + 61T^{2} \)
67 \( 1 - 5.33T + 67T^{2} \)
71 \( 1 + 8.81T + 71T^{2} \)
73 \( 1 + 3.97T + 73T^{2} \)
79 \( 1 - 3.66T + 79T^{2} \)
83 \( 1 + 3.91T + 83T^{2} \)
89 \( 1 + 5.71T + 89T^{2} \)
97 \( 1 - 7.88T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00929896708534700366298427827, −9.623144699669398990087648664046, −8.566839864505368292085832071518, −7.74010063753880648259115649257, −6.72676497307860562235364043916, −5.98652859883397980132051747883, −4.89404734112732022071348771132, −3.02998050545538397213492350204, −1.51687457881933789286040076288, 0, 1.51687457881933789286040076288, 3.02998050545538397213492350204, 4.89404734112732022071348771132, 5.98652859883397980132051747883, 6.72676497307860562235364043916, 7.74010063753880648259115649257, 8.566839864505368292085832071518, 9.623144699669398990087648664046, 10.00929896708534700366298427827

Graph of the $Z$-function along the critical line