Properties

Label 2-592-1.1-c1-0-10
Degree $2$
Conductor $592$
Sign $-1$
Analytic cond. $4.72714$
Root an. cond. $2.17419$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.47·3-s + 1.47·5-s − 2.64·7-s + 3.11·9-s + 6.34·11-s − 5.34·13-s − 3.64·15-s − 0.715·17-s − 3.28·19-s + 6.53·21-s − 0.885·23-s − 2.83·25-s − 0.284·27-s − 0.885·29-s − 7.47·31-s − 15.6·33-s − 3.89·35-s − 37-s + 13.2·39-s − 7.75·41-s − 10.1·43-s + 4.58·45-s − 11.8·47-s − 0.0194·49-s + 1.77·51-s + 4.15·53-s + 9.34·55-s + ⋯
L(s)  = 1  − 1.42·3-s + 0.658·5-s − 0.998·7-s + 1.03·9-s + 1.91·11-s − 1.48·13-s − 0.940·15-s − 0.173·17-s − 0.753·19-s + 1.42·21-s − 0.184·23-s − 0.566·25-s − 0.0546·27-s − 0.164·29-s − 1.34·31-s − 2.73·33-s − 0.657·35-s − 0.164·37-s + 2.11·39-s − 1.21·41-s − 1.54·43-s + 0.683·45-s − 1.72·47-s − 0.00277·49-s + 0.247·51-s + 0.570·53-s + 1.26·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(592\)    =    \(2^{4} \cdot 37\)
Sign: $-1$
Analytic conductor: \(4.72714\)
Root analytic conductor: \(2.17419\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + 2.47T + 3T^{2} \)
5 \( 1 - 1.47T + 5T^{2} \)
7 \( 1 + 2.64T + 7T^{2} \)
11 \( 1 - 6.34T + 11T^{2} \)
13 \( 1 + 5.34T + 13T^{2} \)
17 \( 1 + 0.715T + 17T^{2} \)
19 \( 1 + 3.28T + 19T^{2} \)
23 \( 1 + 0.885T + 23T^{2} \)
29 \( 1 + 0.885T + 29T^{2} \)
31 \( 1 + 7.47T + 31T^{2} \)
41 \( 1 + 7.75T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 + 11.8T + 47T^{2} \)
53 \( 1 - 4.15T + 53T^{2} \)
59 \( 1 - 12.1T + 59T^{2} \)
61 \( 1 - 3.81T + 61T^{2} \)
67 \( 1 - 5.32T + 67T^{2} \)
71 \( 1 + 2.87T + 71T^{2} \)
73 \( 1 + 8.34T + 73T^{2} \)
79 \( 1 - 1.83T + 79T^{2} \)
83 \( 1 + 2.15T + 83T^{2} \)
89 \( 1 + 1.89T + 89T^{2} \)
97 \( 1 - 15.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.990392712974872045625074044138, −9.811486788187792446629135767706, −8.726122921778138655536023254043, −6.97946680295344347948617800115, −6.60160560001282227479028780829, −5.78513746162881769781831084105, −4.82752699320630119816144663728, −3.63242059709245727016449970833, −1.84176972901464465199741885513, 0, 1.84176972901464465199741885513, 3.63242059709245727016449970833, 4.82752699320630119816144663728, 5.78513746162881769781831084105, 6.60160560001282227479028780829, 6.97946680295344347948617800115, 8.726122921778138655536023254043, 9.811486788187792446629135767706, 9.990392712974872045625074044138

Graph of the $Z$-function along the critical line