L(s) = 1 | − 5·3-s + 64·4-s + 191·5-s + 155·7-s − 704·9-s − 320·12-s − 955·15-s + 4.09e3·16-s + 6.05e3·17-s + 443·19-s + 1.22e4·20-s − 775·21-s + 2.08e4·25-s + 7.16e3·27-s + 9.92e3·28-s − 2.34e4·29-s + 2.96e4·35-s − 4.50e4·36-s + 1.37e5·41-s − 1.34e5·45-s − 2.04e4·48-s − 9.36e4·49-s − 3.02e4·51-s − 1.90e5·53-s − 2.21e3·57-s − 2.05e5·59-s − 6.11e4·60-s + ⋯ |
L(s) = 1 | − 0.185·3-s + 4-s + 1.52·5-s + 0.451·7-s − 0.965·9-s − 0.185·12-s − 0.282·15-s + 16-s + 1.23·17-s + 0.0645·19-s + 1.52·20-s − 0.0836·21-s + 1.33·25-s + 0.364·27-s + 0.451·28-s − 0.963·29-s + 0.690·35-s − 0.965·36-s + 1.99·41-s − 1.47·45-s − 0.185·48-s − 0.795·49-s − 0.228·51-s − 1.28·53-s − 0.0119·57-s − 59-s − 0.282·60-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
1
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ59(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), 1)
|
Particular Values
L(27) |
≈ |
2.737033552 |
L(21) |
≈ |
2.737033552 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+p3T |
good | 2 | (1−p3T)(1+p3T) |
| 3 | 1+5T+p6T2 |
| 5 | 1−191T+p6T2 |
| 7 | 1−155T+p6T2 |
| 11 | (1−p3T)(1+p3T) |
| 13 | (1−p3T)(1+p3T) |
| 17 | 1−6050T+p6T2 |
| 19 | 1−443T+p6T2 |
| 23 | (1−p3T)(1+p3T) |
| 29 | 1+23497T+p6T2 |
| 31 | (1−p3T)(1+p3T) |
| 37 | (1−p3T)(1+p3T) |
| 41 | 1−137783T+p6T2 |
| 43 | (1−p3T)(1+p3T) |
| 47 | (1−p3T)(1+p3T) |
| 53 | 1+190825T+p6T2 |
| 61 | (1−p3T)(1+p3T) |
| 67 | (1−p3T)(1+p3T) |
| 71 | 1+683422T+p6T2 |
| 73 | (1−p3T)(1+p3T) |
| 79 | 1+288853T+p6T2 |
| 83 | (1−p3T)(1+p3T) |
| 89 | (1−p3T)(1+p3T) |
| 97 | (1−p3T)(1+p3T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.10584551369521964542591014881, −12.70824428199690825193982961526, −11.48717184455605153560599841218, −10.52034171822121839564032932065, −9.355985583408853208116101962119, −7.75698367492750124051403542193, −6.18499513177944521331361087885, −5.46802252947789690290386787815, −2.82786542540259953009667312199, −1.51537091767807603673283425594,
1.51537091767807603673283425594, 2.82786542540259953009667312199, 5.46802252947789690290386787815, 6.18499513177944521331361087885, 7.75698367492750124051403542193, 9.355985583408853208116101962119, 10.52034171822121839564032932065, 11.48717184455605153560599841218, 12.70824428199690825193982961526, 14.10584551369521964542591014881