Properties

Label 2-59-59.58-c6-0-16
Degree $2$
Conductor $59$
Sign $1$
Analytic cond. $13.5731$
Root an. cond. $3.68418$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s + 64·4-s + 191·5-s + 155·7-s − 704·9-s − 320·12-s − 955·15-s + 4.09e3·16-s + 6.05e3·17-s + 443·19-s + 1.22e4·20-s − 775·21-s + 2.08e4·25-s + 7.16e3·27-s + 9.92e3·28-s − 2.34e4·29-s + 2.96e4·35-s − 4.50e4·36-s + 1.37e5·41-s − 1.34e5·45-s − 2.04e4·48-s − 9.36e4·49-s − 3.02e4·51-s − 1.90e5·53-s − 2.21e3·57-s − 2.05e5·59-s − 6.11e4·60-s + ⋯
L(s)  = 1  − 0.185·3-s + 4-s + 1.52·5-s + 0.451·7-s − 0.965·9-s − 0.185·12-s − 0.282·15-s + 16-s + 1.23·17-s + 0.0645·19-s + 1.52·20-s − 0.0836·21-s + 1.33·25-s + 0.364·27-s + 0.451·28-s − 0.963·29-s + 0.690·35-s − 0.965·36-s + 1.99·41-s − 1.47·45-s − 0.185·48-s − 0.795·49-s − 0.228·51-s − 1.28·53-s − 0.0119·57-s − 59-s − 0.282·60-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $1$
Analytic conductor: \(13.5731\)
Root analytic conductor: \(3.68418\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{59} (58, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(2.737033552\)
\(L(\frac12)\) \(\approx\) \(2.737033552\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 + p^{3} T \)
good2 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
3 \( 1 + 5 T + p^{6} T^{2} \)
5 \( 1 - 191 T + p^{6} T^{2} \)
7 \( 1 - 155 T + p^{6} T^{2} \)
11 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
13 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
17 \( 1 - 6050 T + p^{6} T^{2} \)
19 \( 1 - 443 T + p^{6} T^{2} \)
23 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
29 \( 1 + 23497 T + p^{6} T^{2} \)
31 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
37 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
41 \( 1 - 137783 T + p^{6} T^{2} \)
43 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
47 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
53 \( 1 + 190825 T + p^{6} T^{2} \)
61 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
67 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
71 \( 1 + 683422 T + p^{6} T^{2} \)
73 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
79 \( 1 + 288853 T + p^{6} T^{2} \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10584551369521964542591014881, −12.70824428199690825193982961526, −11.48717184455605153560599841218, −10.52034171822121839564032932065, −9.355985583408853208116101962119, −7.75698367492750124051403542193, −6.18499513177944521331361087885, −5.46802252947789690290386787815, −2.82786542540259953009667312199, −1.51537091767807603673283425594, 1.51537091767807603673283425594, 2.82786542540259953009667312199, 5.46802252947789690290386787815, 6.18499513177944521331361087885, 7.75698367492750124051403542193, 9.355985583408853208116101962119, 10.52034171822121839564032932065, 11.48717184455605153560599841218, 12.70824428199690825193982961526, 14.10584551369521964542591014881

Graph of the $Z$-function along the critical line