Properties

Label 2-59-59.58-c12-0-22
Degree $2$
Conductor $59$
Sign $1$
Analytic cond. $53.9256$
Root an. cond. $7.34340$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.43e3·3-s + 4.09e3·4-s + 5.23e3·5-s − 2.11e5·7-s + 1.52e6·9-s − 5.86e6·12-s − 7.49e6·15-s + 1.67e7·16-s − 1.16e7·17-s − 9.38e7·19-s + 2.14e7·20-s + 3.02e8·21-s − 2.16e8·25-s − 1.41e9·27-s − 8.65e8·28-s − 6.37e8·29-s − 1.10e9·35-s + 6.23e9·36-s + 9.48e9·41-s + 7.96e9·45-s − 2.40e10·48-s + 3.07e10·49-s + 1.67e10·51-s − 7.91e9·53-s + 1.34e11·57-s + 4.21e10·59-s − 3.07e10·60-s + ⋯
L(s)  = 1  − 1.96·3-s + 4-s + 0.334·5-s − 1.79·7-s + 2.86·9-s − 1.96·12-s − 0.658·15-s + 16-s − 0.483·17-s − 1.99·19-s + 0.334·20-s + 3.52·21-s − 0.887·25-s − 3.66·27-s − 1.79·28-s − 1.07·29-s − 0.601·35-s + 2.86·36-s + 1.99·41-s + 0.958·45-s − 1.96·48-s + 2.22·49-s + 0.950·51-s − 0.357·53-s + 3.92·57-s + 59-s − 0.658·60-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $1$
Analytic conductor: \(53.9256\)
Root analytic conductor: \(7.34340\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: $\chi_{59} (58, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(0.6742189039\)
\(L(\frac12)\) \(\approx\) \(0.6742189039\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 - p^{6} T \)
good2 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
3 \( 1 + 1433 T + p^{12} T^{2} \)
5 \( 1 - 5231 T + p^{12} T^{2} \)
7 \( 1 + 211273 T + p^{12} T^{2} \)
11 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
13 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
17 \( 1 + 11672638 T + p^{12} T^{2} \)
19 \( 1 + 93895513 T + p^{12} T^{2} \)
23 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
29 \( 1 + 637537633 T + p^{12} T^{2} \)
31 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
37 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
41 \( 1 - 9483946607 T + p^{12} T^{2} \)
43 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
47 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
53 \( 1 + 7914541633 T + p^{12} T^{2} \)
61 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
67 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
71 \( 1 - 210865062242 T + p^{12} T^{2} \)
73 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
79 \( 1 + 402738855433 T + p^{12} T^{2} \)
83 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
89 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
97 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60105779640211405362670502795, −11.34643054560229609511947925050, −10.53721206325074530033506681007, −9.661277348731806319473336445094, −7.14134374636648922442822990565, −6.30430258635853045707634997246, −5.83678605388361622782114589238, −4.01044719546719501778210240220, −2.09729684936529905219395962876, −0.47526207818152328414793319320, 0.47526207818152328414793319320, 2.09729684936529905219395962876, 4.01044719546719501778210240220, 5.83678605388361622782114589238, 6.30430258635853045707634997246, 7.14134374636648922442822990565, 9.661277348731806319473336445094, 10.53721206325074530033506681007, 11.34643054560229609511947925050, 12.60105779640211405362670502795

Graph of the $Z$-function along the critical line