L(s) = 1 | − 1.43e3·3-s + 4.09e3·4-s + 5.23e3·5-s − 2.11e5·7-s + 1.52e6·9-s − 5.86e6·12-s − 7.49e6·15-s + 1.67e7·16-s − 1.16e7·17-s − 9.38e7·19-s + 2.14e7·20-s + 3.02e8·21-s − 2.16e8·25-s − 1.41e9·27-s − 8.65e8·28-s − 6.37e8·29-s − 1.10e9·35-s + 6.23e9·36-s + 9.48e9·41-s + 7.96e9·45-s − 2.40e10·48-s + 3.07e10·49-s + 1.67e10·51-s − 7.91e9·53-s + 1.34e11·57-s + 4.21e10·59-s − 3.07e10·60-s + ⋯ |
L(s) = 1 | − 1.96·3-s + 4-s + 0.334·5-s − 1.79·7-s + 2.86·9-s − 1.96·12-s − 0.658·15-s + 16-s − 0.483·17-s − 1.99·19-s + 0.334·20-s + 3.52·21-s − 0.887·25-s − 3.66·27-s − 1.79·28-s − 1.07·29-s − 0.601·35-s + 2.86·36-s + 1.99·41-s + 0.958·45-s − 1.96·48-s + 2.22·49-s + 0.950·51-s − 0.357·53-s + 3.92·57-s + 59-s − 0.658·60-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)Λ(13−s)
Λ(s)=(=(59s/2ΓC(s+6)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
1
|
Analytic conductor: |
53.9256 |
Root analytic conductor: |
7.34340 |
Motivic weight: |
12 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ59(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :6), 1)
|
Particular Values
L(213) |
≈ |
0.6742189039 |
L(21) |
≈ |
0.6742189039 |
L(7) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1−p6T |
good | 2 | (1−p6T)(1+p6T) |
| 3 | 1+1433T+p12T2 |
| 5 | 1−5231T+p12T2 |
| 7 | 1+211273T+p12T2 |
| 11 | (1−p6T)(1+p6T) |
| 13 | (1−p6T)(1+p6T) |
| 17 | 1+11672638T+p12T2 |
| 19 | 1+93895513T+p12T2 |
| 23 | (1−p6T)(1+p6T) |
| 29 | 1+637537633T+p12T2 |
| 31 | (1−p6T)(1+p6T) |
| 37 | (1−p6T)(1+p6T) |
| 41 | 1−9483946607T+p12T2 |
| 43 | (1−p6T)(1+p6T) |
| 47 | (1−p6T)(1+p6T) |
| 53 | 1+7914541633T+p12T2 |
| 61 | (1−p6T)(1+p6T) |
| 67 | (1−p6T)(1+p6T) |
| 71 | 1−210865062242T+p12T2 |
| 73 | (1−p6T)(1+p6T) |
| 79 | 1+402738855433T+p12T2 |
| 83 | (1−p6T)(1+p6T) |
| 89 | (1−p6T)(1+p6T) |
| 97 | (1−p6T)(1+p6T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60105779640211405362670502795, −11.34643054560229609511947925050, −10.53721206325074530033506681007, −9.661277348731806319473336445094, −7.14134374636648922442822990565, −6.30430258635853045707634997246, −5.83678605388361622782114589238, −4.01044719546719501778210240220, −2.09729684936529905219395962876, −0.47526207818152328414793319320,
0.47526207818152328414793319320, 2.09729684936529905219395962876, 4.01044719546719501778210240220, 5.83678605388361622782114589238, 6.30430258635853045707634997246, 7.14134374636648922442822990565, 9.661277348731806319473336445094, 10.53721206325074530033506681007, 11.34643054560229609511947925050, 12.60105779640211405362670502795