Properties

Label 2-59-59.43-c6-0-1
Degree $2$
Conductor $59$
Sign $-0.980 + 0.196i$
Analytic cond. $13.5731$
Root an. cond. $3.68418$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.82 + 12.8i)2-s + (−6.70 − 40.9i)3-s + (−98.2 − 45.4i)4-s + (−36.2 − 130. i)5-s + (543. + 29.4i)6-s + (400. + 379. i)7-s + (351. − 462. i)8-s + (−938. + 316. i)9-s + (1.77e3 − 96.3i)10-s + (−1.42e3 − 1.20e3i)11-s + (−1.20e3 + 4.32e3i)12-s + (15.4 − 45.9i)13-s + (−5.99e3 + 4.06e3i)14-s + (−5.10e3 + 2.35e3i)15-s + (454. + 534. i)16-s + (−404. + 382. i)17-s + ⋯
L(s)  = 1  + (−0.352 + 1.60i)2-s + (−0.248 − 1.51i)3-s + (−1.53 − 0.710i)4-s + (−0.290 − 1.04i)5-s + (2.51 + 0.136i)6-s + (1.16 + 1.10i)7-s + (0.687 − 0.904i)8-s + (−1.28 + 0.433i)9-s + (1.77 − 0.0963i)10-s + (−1.06 − 0.906i)11-s + (−0.695 + 2.50i)12-s + (0.00704 − 0.0209i)13-s + (−2.18 + 1.48i)14-s + (−1.51 + 0.699i)15-s + (0.110 + 0.130i)16-s + (−0.0822 + 0.0779i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.980 + 0.196i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $-0.980 + 0.196i$
Analytic conductor: \(13.5731\)
Root analytic conductor: \(3.68418\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{59} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :3),\ -0.980 + 0.196i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.0122277 - 0.123044i\)
\(L(\frac12)\) \(\approx\) \(0.0122277 - 0.123044i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 + (1.28e5 + 1.60e5i)T \)
good2 \( 1 + (2.82 - 12.8i)T + (-58.0 - 26.8i)T^{2} \)
3 \( 1 + (6.70 + 40.9i)T + (-690. + 232. i)T^{2} \)
5 \( 1 + (36.2 + 130. i)T + (-1.33e4 + 8.05e3i)T^{2} \)
7 \( 1 + (-400. - 379. i)T + (6.36e3 + 1.17e5i)T^{2} \)
11 \( 1 + (1.42e3 + 1.20e3i)T + (2.86e5 + 1.74e6i)T^{2} \)
13 \( 1 + (-15.4 + 45.9i)T + (-3.84e6 - 2.92e6i)T^{2} \)
17 \( 1 + (404. - 382. i)T + (1.30e6 - 2.41e7i)T^{2} \)
19 \( 1 + (3.05e3 - 7.67e3i)T + (-3.41e7 - 3.23e7i)T^{2} \)
23 \( 1 + (2.12e3 - 1.95e4i)T + (-1.44e8 - 3.18e7i)T^{2} \)
29 \( 1 + (2.56e4 - 5.63e3i)T + (5.39e8 - 2.49e8i)T^{2} \)
31 \( 1 + (5.17e4 - 2.06e4i)T + (6.44e8 - 6.10e8i)T^{2} \)
37 \( 1 + (-3.08e4 - 4.05e4i)T + (-6.86e8 + 2.47e9i)T^{2} \)
41 \( 1 + (5.96e4 - 6.48e3i)T + (4.63e9 - 1.02e9i)T^{2} \)
43 \( 1 + (-5.61e4 + 4.77e4i)T + (1.02e9 - 6.23e9i)T^{2} \)
47 \( 1 + (-5.18e4 - 1.43e4i)T + (9.23e9 + 5.55e9i)T^{2} \)
53 \( 1 + (-3.03e3 + 5.60e4i)T + (-2.20e10 - 2.39e9i)T^{2} \)
61 \( 1 + (-5.19e3 + 2.35e4i)T + (-4.67e10 - 2.16e10i)T^{2} \)
67 \( 1 + (1.01e5 - 1.33e5i)T + (-2.42e10 - 8.71e10i)T^{2} \)
71 \( 1 + (-1.89e4 + 6.82e4i)T + (-1.09e11 - 6.60e10i)T^{2} \)
73 \( 1 + (4.13e5 - 2.80e5i)T + (5.60e10 - 1.40e11i)T^{2} \)
79 \( 1 + (-2.67e4 + 1.63e5i)T + (-2.30e11 - 7.76e10i)T^{2} \)
83 \( 1 + (-1.38e5 - 7.34e4i)T + (1.83e11 + 2.70e11i)T^{2} \)
89 \( 1 + (1.69e5 + 7.71e5i)T + (-4.51e11 + 2.08e11i)T^{2} \)
97 \( 1 + (-1.42e6 - 9.64e5i)T + (3.08e11 + 7.73e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61230325981254222590118665113, −13.46767620461895159982222944577, −12.50306835313968830044559452830, −11.41726538744578820507539586282, −8.868143233894852855715879498554, −8.160063440744229902876666486752, −7.52535299467922964068514748399, −5.80007540630520269729354747164, −5.30815218210106867742381652244, −1.61356285318745362349027305729, 0.05942118299399765262501772696, 2.41237913626229515419307968075, 3.93646941572441041755944167825, 4.73513090366247056201588688150, 7.49566503106718369491653363419, 9.183917601021547249236841687909, 10.53876617814802113466365221669, 10.64004095242776741133306282128, 11.39092648722880016383302449484, 13.02580396903947937898685662530

Graph of the $Z$-function along the critical line