L(s) = 1 | + (−1.01 + 0.988i)2-s + (−1.03 + 1.38i)3-s + (0.0474 − 1.99i)4-s + (−1.97 + 1.13i)5-s + (−0.323 − 2.42i)6-s + (1.92 + 2.06i)8-s + (−0.852 − 2.87i)9-s + (0.870 − 3.10i)10-s + (2.15 − 3.73i)11-s + (2.72 + 2.13i)12-s − 0.406·13-s + (0.463 − 3.91i)15-s + (−3.99 − 0.189i)16-s + (−3.73 − 2.15i)17-s + (3.70 + 2.06i)18-s + (4.70 − 2.71i)19-s + ⋯ |
L(s) = 1 | + (−0.715 + 0.698i)2-s + (−0.598 + 0.801i)3-s + (0.0237 − 0.999i)4-s + (−0.882 + 0.509i)5-s + (−0.131 − 0.991i)6-s + (0.681 + 0.731i)8-s + (−0.284 − 0.958i)9-s + (0.275 − 0.980i)10-s + (0.651 − 1.12i)11-s + (0.786 + 0.617i)12-s − 0.112·13-s + (0.119 − 1.01i)15-s + (−0.998 − 0.0474i)16-s + (−0.907 − 0.523i)17-s + (0.873 + 0.487i)18-s + (1.07 − 0.622i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.873 - 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.873 - 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.586229 + 0.152485i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.586229 + 0.152485i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.01 - 0.988i)T \) |
| 3 | \( 1 + (1.03 - 1.38i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.97 - 1.13i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.15 + 3.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 0.406T + 13T^{2} \) |
| 17 | \( 1 + (3.73 + 2.15i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.70 + 2.71i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.581 - 1.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.72iT - 29T^{2} \) |
| 31 | \( 1 + (-5.05 - 2.91i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.91 - 6.78i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.56iT - 41T^{2} \) |
| 43 | \( 1 + 11.0iT - 43T^{2} \) |
| 47 | \( 1 + (-1.16 - 2.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.74 - 2.74i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.95 + 3.38i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.22 + 9.04i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.78 - 3.91i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 4.88T + 71T^{2} \) |
| 73 | \( 1 + (1.40 - 2.43i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.46 + 2i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 0.641T + 83T^{2} \) |
| 89 | \( 1 + (-12.1 + 6.99i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79019548731503379071125987375, −9.776884805968559869167077345797, −9.050905982766368355639943878942, −8.198997256087969917593294055445, −7.08495128992879238518654128544, −6.39569050346078535099387604346, −5.35879470098719210137632576700, −4.34321348512774829969276528507, −3.12687366431283183132065507282, −0.61794803405078768720550515439,
1.02063657989928198401461179846, 2.27657263162120635469407837501, 3.92920536395194487639215727653, 4.80575139081298122113509749630, 6.37877492516458776611850284619, 7.34301995351777854179089936044, 7.916327268295802509083983492781, 8.842531945477282559721369328638, 9.800410423774457318148163046559, 10.78716630490310123475991222011