L(s) = 1 | + (−4.5 + 7.79i)3-s + (39.3 + 68.1i)5-s + (−40.5 − 70.1i)9-s + (−345. + 598. i)11-s − 818.·13-s − 708.·15-s + (554. − 960. i)17-s + (−286. − 496. i)19-s + (−1.25e3 − 2.18e3i)23-s + (−1.53e3 + 2.65e3i)25-s + 729·27-s − 3.25e3·29-s + (5.05e3 − 8.76e3i)31-s + (−3.11e3 − 5.38e3i)33-s + (−2.43e3 − 4.21e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.703 + 1.21i)5-s + (−0.166 − 0.288i)9-s + (−0.861 + 1.49i)11-s − 1.34·13-s − 0.812·15-s + (0.465 − 0.806i)17-s + (−0.182 − 0.315i)19-s + (−0.496 − 0.859i)23-s + (−0.490 + 0.849i)25-s + 0.192·27-s − 0.719·29-s + (0.945 − 1.63i)31-s + (−0.497 − 0.861i)33-s + (−0.292 − 0.506i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.6519688496\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6519688496\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-39.3 - 68.1i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (345. - 598. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 818.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-554. + 960. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (286. + 496. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (1.25e3 + 2.18e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 3.25e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-5.05e3 + 8.76e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (2.43e3 + 4.21e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.30e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 9.30e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-6.45e3 - 1.11e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-9.77e3 + 1.69e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.25e4 - 2.17e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.56e4 + 2.71e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.79e4 - 4.84e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 - 2.05e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (3.38e4 - 5.85e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (7.03e3 + 1.21e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 7.71e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-160. - 277. i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.12e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.998486741416113647930281721139, −9.347570929574025191321589420179, −7.69390171999171770428906054037, −7.15591689020391763104503948984, −6.14733292967741216363395231288, −5.13955098848657169366369657713, −4.29459992638884569441479682175, −2.68181713973450480556465538386, −2.27216269510107732894365325685, −0.16350537271178732751894324320,
0.937635321912667336934340148633, 1.93353275365786013877437808135, 3.22921224745443967011301324273, 4.79614377797507738807053062380, 5.51434185144685156469246146685, 6.15341726245543779962908989374, 7.54642164592174511153403678563, 8.277784635628010683501585053747, 9.069166137143647470921573014543, 10.07063365993961363091190051477