L(s) = 1 | + (−4.5 + 7.79i)3-s + (39.3 + 68.1i)5-s + (−40.5 − 70.1i)9-s + (−345. + 598. i)11-s − 818.·13-s − 708.·15-s + (554. − 960. i)17-s + (−286. − 496. i)19-s + (−1.25e3 − 2.18e3i)23-s + (−1.53e3 + 2.65e3i)25-s + 729·27-s − 3.25e3·29-s + (5.05e3 − 8.76e3i)31-s + (−3.11e3 − 5.38e3i)33-s + (−2.43e3 − 4.21e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (0.703 + 1.21i)5-s + (−0.166 − 0.288i)9-s + (−0.861 + 1.49i)11-s − 1.34·13-s − 0.812·15-s + (0.465 − 0.806i)17-s + (−0.182 − 0.315i)19-s + (−0.496 − 0.859i)23-s + (−0.490 + 0.849i)25-s + 0.192·27-s − 0.719·29-s + (0.945 − 1.63i)31-s + (−0.497 − 0.861i)33-s + (−0.292 − 0.506i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.605+0.795i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(0.605+0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.605+0.795i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), 0.605+0.795i)
|
Particular Values
L(3) |
≈ |
0.6519688496 |
L(21) |
≈ |
0.6519688496 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5−7.79i)T |
| 7 | 1 |
good | 5 | 1+(−39.3−68.1i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(345.−598.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+818.T+3.71e5T2 |
| 17 | 1+(−554.+960.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(286.+496.i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(1.25e3+2.18e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+3.25e3T+2.05e7T2 |
| 31 | 1+(−5.05e3+8.76e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(2.43e3+4.21e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−1.30e4T+1.15e8T2 |
| 43 | 1+9.30e3T+1.47e8T2 |
| 47 | 1+(−6.45e3−1.11e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−9.77e3+1.69e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(1.25e4−2.17e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(1.56e4+2.71e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(2.79e4−4.84e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1−2.05e4T+1.80e9T2 |
| 73 | 1+(3.38e4−5.85e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(7.03e3+1.21e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1−7.71e4T+3.93e9T2 |
| 89 | 1+(−160.−277.i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−1.12e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.998486741416113647930281721139, −9.347570929574025191321589420179, −7.69390171999171770428906054037, −7.15591689020391763104503948984, −6.14733292967741216363395231288, −5.13955098848657169366369657713, −4.29459992638884569441479682175, −2.68181713973450480556465538386, −2.27216269510107732894365325685, −0.16350537271178732751894324320,
0.937635321912667336934340148633, 1.93353275365786013877437808135, 3.22921224745443967011301324273, 4.79614377797507738807053062380, 5.51434185144685156469246146685, 6.15341726245543779962908989374, 7.54642164592174511153403678563, 8.277784635628010683501585053747, 9.069166137143647470921573014543, 10.07063365993961363091190051477