L(s) = 1 | + (−4.5 − 7.79i)3-s + (−38.8 + 67.2i)5-s + (−40.5 + 70.1i)9-s + (−238. − 413. i)11-s + 63.7·13-s + 698.·15-s + (518. + 898. i)17-s + (−333. + 577. i)19-s + (−1.62e3 + 2.81e3i)23-s + (−1.45e3 − 2.51e3i)25-s + 729·27-s + 2.30e3·29-s + (1.85e3 + 3.21e3i)31-s + (−2.14e3 + 3.72e3i)33-s + (−6.12e3 + 1.06e4i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.694 + 1.20i)5-s + (−0.166 + 0.288i)9-s + (−0.594 − 1.03i)11-s + 0.104·13-s + 0.801·15-s + (0.435 + 0.754i)17-s + (−0.211 + 0.367i)19-s + (−0.640 + 1.10i)23-s + (−0.464 − 0.803i)25-s + 0.192·27-s + 0.508·29-s + (0.347 + 0.601i)31-s + (−0.343 + 0.594i)33-s + (−0.735 + 1.27i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.3856594792\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3856594792\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (38.8 - 67.2i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (238. + 413. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 63.7T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-518. - 898. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (333. - 577. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (1.62e3 - 2.81e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 2.30e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.85e3 - 3.21e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (6.12e3 - 1.06e4i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.82e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 2.07e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (2.14e3 - 3.70e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (1.28e4 + 2.22e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.41e3 + 2.45e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-8.40e3 + 1.45e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-3.12e4 - 5.41e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 7.23e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (2.78e4 + 4.82e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-1.99e3 + 3.45e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 4.60e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-6.76e4 + 1.17e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.42e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.969679165019472652208172332690, −8.340107497236236323854275732585, −7.975738278175087615507194311913, −6.88635258917440491606022157397, −6.21697453981815996563972831298, −5.19916182954355879991555913375, −3.64750509943567458252656660484, −3.02498987225598824498461885088, −1.59804112156089165665430964074, −0.11862014060307787771893686478,
0.799937453075725890137391300786, 2.33762802900758455706464986772, 3.82673394934010298392069978200, 4.71910719493133869426373524742, 5.21062515158322478743735948884, 6.56699996784460935574517593423, 7.69211452236991929118294298481, 8.426269252361693004690008995373, 9.330418730424216858356807112519, 10.10040851420790273398255029053