L(s) = 1 | + (−4.5 − 7.79i)3-s + (−38.8 + 67.2i)5-s + (−40.5 + 70.1i)9-s + (−238. − 413. i)11-s + 63.7·13-s + 698.·15-s + (518. + 898. i)17-s + (−333. + 577. i)19-s + (−1.62e3 + 2.81e3i)23-s + (−1.45e3 − 2.51e3i)25-s + 729·27-s + 2.30e3·29-s + (1.85e3 + 3.21e3i)31-s + (−2.14e3 + 3.72e3i)33-s + (−6.12e3 + 1.06e4i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.694 + 1.20i)5-s + (−0.166 + 0.288i)9-s + (−0.594 − 1.03i)11-s + 0.104·13-s + 0.801·15-s + (0.435 + 0.754i)17-s + (−0.211 + 0.367i)19-s + (−0.640 + 1.10i)23-s + (−0.464 − 0.803i)25-s + 0.192·27-s + 0.508·29-s + (0.347 + 0.601i)31-s + (−0.343 + 0.594i)33-s + (−0.735 + 1.27i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(−0.266+0.963i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(−0.266+0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
−0.266+0.963i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), −0.266+0.963i)
|
Particular Values
L(3) |
≈ |
0.3856594792 |
L(21) |
≈ |
0.3856594792 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(38.8−67.2i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(238.+413.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−63.7T+3.71e5T2 |
| 17 | 1+(−518.−898.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(333.−577.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(1.62e3−2.81e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−2.30e3T+2.05e7T2 |
| 31 | 1+(−1.85e3−3.21e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(6.12e3−1.06e4i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−1.82e3T+1.15e8T2 |
| 43 | 1+2.07e4T+1.47e8T2 |
| 47 | 1+(2.14e3−3.70e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(1.28e4+2.22e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.41e3+2.45e3i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−8.40e3+1.45e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−3.12e4−5.41e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−7.23e4T+1.80e9T2 |
| 73 | 1+(2.78e4+4.82e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−1.99e3+3.45e3i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−4.60e4T+3.93e9T2 |
| 89 | 1+(−6.76e4+1.17e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+1.42e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.969679165019472652208172332690, −8.340107497236236323854275732585, −7.975738278175087615507194311913, −6.88635258917440491606022157397, −6.21697453981815996563972831298, −5.19916182954355879991555913375, −3.64750509943567458252656660484, −3.02498987225598824498461885088, −1.59804112156089165665430964074, −0.11862014060307787771893686478,
0.799937453075725890137391300786, 2.33762802900758455706464986772, 3.82673394934010298392069978200, 4.71910719493133869426373524742, 5.21062515158322478743735948884, 6.56699996784460935574517593423, 7.69211452236991929118294298481, 8.426269252361693004690008995373, 9.330418730424216858356807112519, 10.10040851420790273398255029053