L(s) = 1 | + (−4.5 − 7.79i)3-s + (−46.4 + 80.3i)5-s + (−40.5 + 70.1i)9-s + (−70.3 − 121. i)11-s + 1.11e3·13-s + 835.·15-s + (27.4 + 47.5i)17-s + (−855. + 1.48e3i)19-s + (1.64e3 − 2.84e3i)23-s + (−2.74e3 − 4.75e3i)25-s + 729·27-s − 3.79e3·29-s + (−2.42e3 − 4.19e3i)31-s + (−633. + 1.09e3i)33-s + (5.68e3 − 9.84e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.830 + 1.43i)5-s + (−0.166 + 0.288i)9-s + (−0.175 − 0.303i)11-s + 1.82·13-s + 0.958·15-s + (0.0230 + 0.0398i)17-s + (−0.543 + 0.942i)19-s + (0.647 − 1.12i)23-s + (−0.878 − 1.52i)25-s + 0.192·27-s − 0.837·29-s + (−0.452 − 0.784i)31-s + (−0.101 + 0.175i)33-s + (0.682 − 1.18i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.482707466\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.482707466\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (46.4 - 80.3i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (70.3 + 121. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 1.11e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-27.4 - 47.5i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (855. - 1.48e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.64e3 + 2.84e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 3.79e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (2.42e3 + 4.19e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-5.68e3 + 9.84e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.03e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 7.13e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (8.20e3 - 1.42e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.04e4 - 1.81e4i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.81e4 + 3.13e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-2.47e3 + 4.28e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-1.14e4 - 1.98e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 2.63e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-2.76e4 - 4.79e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-2.49e4 + 4.32e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 4.48e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-6.39e4 + 1.10e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 6.56e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47860170879590065496709682270, −9.023465834159755314315616098733, −8.025785941214688908660850533677, −7.42377008553166407080261920481, −6.33472450832149523977959188111, −5.93558755208266795060211851269, −4.14937366059269489125663190653, −3.39228616223431254588499237447, −2.25282808466384982199113150622, −0.76584839327575808548131041259,
0.51533397506853286279368896396, 1.46324361554790387047470707127, 3.38358124510480296654621372773, 4.22867755304245865214447485899, 5.03060154365125062957758293725, 5.91949850669519986425083679232, 7.19210613730961670651184978345, 8.294490047036297988266906198400, 8.854283785954001424562194205455, 9.579949037548859817820316451292