L(s) = 1 | + (−4.5 − 7.79i)3-s + (−46.4 + 80.3i)5-s + (−40.5 + 70.1i)9-s + (−70.3 − 121. i)11-s + 1.11e3·13-s + 835.·15-s + (27.4 + 47.5i)17-s + (−855. + 1.48e3i)19-s + (1.64e3 − 2.84e3i)23-s + (−2.74e3 − 4.75e3i)25-s + 729·27-s − 3.79e3·29-s + (−2.42e3 − 4.19e3i)31-s + (−633. + 1.09e3i)33-s + (5.68e3 − 9.84e3i)37-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.830 + 1.43i)5-s + (−0.166 + 0.288i)9-s + (−0.175 − 0.303i)11-s + 1.82·13-s + 0.958·15-s + (0.0230 + 0.0398i)17-s + (−0.543 + 0.942i)19-s + (0.647 − 1.12i)23-s + (−0.878 − 1.52i)25-s + 0.192·27-s − 0.837·29-s + (−0.452 − 0.784i)31-s + (−0.101 + 0.175i)33-s + (0.682 − 1.18i)37-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)(0.605−0.795i)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
588
= 22⋅3⋅72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
94.3056 |
Root analytic conductor: |
9.71111 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ588(373,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 588, ( :5/2), 0.605−0.795i)
|
Particular Values
L(3) |
≈ |
1.482707466 |
L(21) |
≈ |
1.482707466 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(46.4−80.3i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(70.3+121.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−1.11e3T+3.71e5T2 |
| 17 | 1+(−27.4−47.5i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(855.−1.48e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(−1.64e3+2.84e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+3.79e3T+2.05e7T2 |
| 31 | 1+(2.42e3+4.19e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−5.68e3+9.84e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−1.03e4T+1.15e8T2 |
| 43 | 1−7.13e3T+1.47e8T2 |
| 47 | 1+(8.20e3−1.42e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−1.04e4−1.81e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.81e4+3.13e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−2.47e3+4.28e3i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−1.14e4−1.98e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+2.63e4T+1.80e9T2 |
| 73 | 1+(−2.76e4−4.79e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−2.49e4+4.32e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+4.48e4T+3.93e9T2 |
| 89 | 1+(−6.39e4+1.10e5i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−6.56e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47860170879590065496709682270, −9.023465834159755314315616098733, −8.025785941214688908660850533677, −7.42377008553166407080261920481, −6.33472450832149523977959188111, −5.93558755208266795060211851269, −4.14937366059269489125663190653, −3.39228616223431254588499237447, −2.25282808466384982199113150622, −0.76584839327575808548131041259,
0.51533397506853286279368896396, 1.46324361554790387047470707127, 3.38358124510480296654621372773, 4.22867755304245865214447485899, 5.03060154365125062957758293725, 5.91949850669519986425083679232, 7.19210613730961670651184978345, 8.294490047036297988266906198400, 8.854283785954001424562194205455, 9.579949037548859817820316451292