L(s) = 1 | + (−0.914 + 1.07i)2-s + (0.5 − 0.866i)3-s + (−0.326 − 1.97i)4-s + (−0.441 + 0.254i)5-s + (0.476 + 1.33i)6-s + (2.42 + 1.45i)8-s + (−0.499 − 0.866i)9-s + (0.129 − 0.709i)10-s + (−3.57 − 2.06i)11-s + (−1.87 − 0.704i)12-s − 3.97i·13-s + 0.509i·15-s + (−3.78 + 1.28i)16-s + (4.27 + 2.46i)17-s + (1.39 + 0.253i)18-s + (−2.52 − 4.37i)19-s + ⋯ |
L(s) = 1 | + (−0.646 + 0.762i)2-s + (0.288 − 0.499i)3-s + (−0.163 − 0.986i)4-s + (−0.197 + 0.114i)5-s + (0.194 + 0.543i)6-s + (0.857 + 0.513i)8-s + (−0.166 − 0.288i)9-s + (0.0407 − 0.224i)10-s + (−1.07 − 0.622i)11-s + (−0.540 − 0.203i)12-s − 1.10i·13-s + 0.131i·15-s + (−0.946 + 0.321i)16-s + (1.03 + 0.598i)17-s + (0.327 + 0.0596i)18-s + (−0.579 − 1.00i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0257 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0257 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.472369 - 0.484713i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.472369 - 0.484713i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.914 - 1.07i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.441 - 0.254i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3.57 + 2.06i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 3.97iT - 13T^{2} \) |
| 17 | \( 1 + (-4.27 - 2.46i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.52 + 4.37i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.52 - 1.45i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.82T + 29T^{2} \) |
| 31 | \( 1 + (-2.85 + 4.95i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.00 + 8.66i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 11.7iT - 41T^{2} \) |
| 43 | \( 1 + 9.84iT - 43T^{2} \) |
| 47 | \( 1 + (-3.93 - 6.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.619 - 1.07i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.32 - 4.03i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.470 - 0.271i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.08 - 3.51i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.06iT - 71T^{2} \) |
| 73 | \( 1 + (0.724 + 0.418i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.08 + 0.629i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 13.7T + 83T^{2} \) |
| 89 | \( 1 + (-4.06 + 2.34i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 1.80iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50886130551061200264675915532, −9.384710872947019850590286229748, −8.503105059798626258983370586429, −7.72374667585366835916588648499, −7.27257542230376937409077908568, −5.83084708262727309732948150438, −5.44624073446287576316296206490, −3.69159859729129050164752204322, −2.22667740668582183777027431400, −0.43993697041367942537956637573,
1.81690033589766725553930027312, 3.01583331368188810385627086504, 4.14029923881183196439256126727, 5.01399893869557678345825602503, 6.61458829014296170949341274375, 7.88097937238946742877403686891, 8.227860041930563373195754130167, 9.472960313415504800468095481202, 9.973903327858933973267595219231, 10.68533634082991416136929876930