L(s) = 1 | + (−1.22 − 0.709i)2-s + (−0.5 + 0.866i)3-s + (0.994 + 1.73i)4-s + (−3.15 + 1.82i)5-s + (1.22 − 0.705i)6-s + (0.0143 − 2.82i)8-s + (−0.499 − 0.866i)9-s + (5.15 + 0.00873i)10-s + (−5.25 − 3.03i)11-s + (−1.99 − 0.00677i)12-s + 0.483i·13-s − 3.64i·15-s + (−2.02 + 3.45i)16-s + (2.21 + 1.27i)17-s + (−0.00239 + 1.41i)18-s + (0.609 + 1.05i)19-s + ⋯ |
L(s) = 1 | + (−0.865 − 0.501i)2-s + (−0.288 + 0.499i)3-s + (0.497 + 0.867i)4-s + (−1.41 + 0.815i)5-s + (0.500 − 0.287i)6-s + (0.00508 − 0.999i)8-s + (−0.166 − 0.288i)9-s + (1.63 + 0.00276i)10-s + (−1.58 − 0.915i)11-s + (−0.577 − 0.00195i)12-s + 0.134i·13-s − 0.941i·15-s + (−0.505 + 0.862i)16-s + (0.536 + 0.309i)17-s + (−0.000564 + 0.333i)18-s + (0.139 + 0.242i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.324 + 0.945i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.324 + 0.945i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.303068 - 0.216417i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.303068 - 0.216417i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.22 + 0.709i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (3.15 - 1.82i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (5.25 + 3.03i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.483iT - 13T^{2} \) |
| 17 | \( 1 + (-2.21 - 1.27i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.609 - 1.05i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.00 + 1.73i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.21T + 29T^{2} \) |
| 31 | \( 1 + (-3.15 + 5.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.595 + 1.03i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.59iT - 41T^{2} \) |
| 43 | \( 1 + 3.51iT - 43T^{2} \) |
| 47 | \( 1 + (5.83 + 10.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.31 - 2.27i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.580 - 1.00i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.180 + 0.104i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.53 + 0.888i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.13iT - 71T^{2} \) |
| 73 | \( 1 + (5.23 + 3.02i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.75 + 1.58i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.49T + 83T^{2} \) |
| 89 | \( 1 + (-10.6 + 6.14i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 11.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51917637736649299877690576705, −10.03334965608532458976893212184, −8.568571962315041841135999170090, −8.059876674558342563479726169279, −7.26782416982980826518041055615, −6.15835328549033787456000068246, −4.65403231972295305011580153004, −3.44688096443407817007826832727, −2.81644839185784195556266703540, −0.36120995962245422140598367407,
1.02880289298671138792653785924, 2.81316484572393671857571177496, 4.74503234516177856677981106771, 5.25075470374671543179197104004, 6.72693373222360884788873230651, 7.60826082794105551831264468769, 7.987733169182223010735043656105, 8.829067965368561519446758373043, 9.987578128271344766842697727275, 10.78295963831599788308557223521