L(s) = 1 | + (0.250 − 1.39i)2-s − 3-s + (−1.87 − 0.697i)4-s − 3.39i·5-s + (−0.250 + 1.39i)6-s + (−1.44 + 2.43i)8-s + 9-s + (−4.72 − 0.850i)10-s − 1.94i·11-s + (1.87 + 0.697i)12-s − 5.34i·13-s + 3.39i·15-s + (3.02 + 2.61i)16-s + 1.74i·17-s + (0.250 − 1.39i)18-s − 6.27·19-s + ⋯ |
L(s) = 1 | + (0.177 − 0.984i)2-s − 0.577·3-s + (−0.937 − 0.348i)4-s − 1.51i·5-s + (−0.102 + 0.568i)6-s + (−0.509 + 0.860i)8-s + 0.333·9-s + (−1.49 − 0.268i)10-s − 0.585i·11-s + (0.541 + 0.201i)12-s − 1.48i·13-s + 0.875i·15-s + (0.756 + 0.653i)16-s + 0.423i·17-s + (0.0590 − 0.328i)18-s − 1.43·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.712 - 0.701i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.712 - 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.278790 + 0.680332i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.278790 + 0.680332i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.250 + 1.39i)T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 3.39iT - 5T^{2} \) |
| 11 | \( 1 + 1.94iT - 11T^{2} \) |
| 13 | \( 1 + 5.34iT - 13T^{2} \) |
| 17 | \( 1 - 1.74iT - 17T^{2} \) |
| 19 | \( 1 + 6.27T + 19T^{2} \) |
| 23 | \( 1 - 8.39iT - 23T^{2} \) |
| 29 | \( 1 - 4.18T + 29T^{2} \) |
| 31 | \( 1 + 4.59T + 31T^{2} \) |
| 37 | \( 1 + 1.78T + 37T^{2} \) |
| 41 | \( 1 + 1.32iT - 41T^{2} \) |
| 43 | \( 1 + 3.27iT - 43T^{2} \) |
| 47 | \( 1 - 8.22T + 47T^{2} \) |
| 53 | \( 1 + 11.8T + 53T^{2} \) |
| 59 | \( 1 - 0.507T + 59T^{2} \) |
| 61 | \( 1 - 7.63iT - 61T^{2} \) |
| 67 | \( 1 + 16.1iT - 67T^{2} \) |
| 71 | \( 1 + 1.11iT - 71T^{2} \) |
| 73 | \( 1 + 3.06iT - 73T^{2} \) |
| 79 | \( 1 + 6.77iT - 79T^{2} \) |
| 83 | \( 1 - 5.39T + 83T^{2} \) |
| 89 | \( 1 + 10.1iT - 89T^{2} \) |
| 97 | \( 1 + 6.46iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38965109048796423018073290896, −9.340170748720623273290672998434, −8.608016465210628988948407902478, −7.83258348124875663352169115554, −5.95602264582610343035173356761, −5.37901165841224334409192308270, −4.48655893628995453309570693984, −3.40791202367358470281835003352, −1.65514511416910354814952332032, −0.42557544919503683521816132118,
2.44231312967821083392639401563, 3.98932257921873813007496949820, 4.76368506296978628713264725692, 6.23519116933049776146247797491, 6.66142097823627718807859536986, 7.24742361848453048794610383587, 8.454243496495802525237445196248, 9.485904379010991587472706000765, 10.39619812129822667229092556519, 11.11075195972977140440557597130