L(s) = 1 | + (0.639 − 1.26i)2-s − 3-s + (−1.18 − 1.61i)4-s + 3.10i·5-s + (−0.639 + 1.26i)6-s + (−2.79 + 0.457i)8-s + 9-s + (3.91 + 1.98i)10-s − 5.34i·11-s + (1.18 + 1.61i)12-s − 3.92i·13-s − 3.10i·15-s + (−1.20 + 3.81i)16-s − 5.68i·17-s + (0.639 − 1.26i)18-s − 0.170·19-s + ⋯ |
L(s) = 1 | + (0.452 − 0.891i)2-s − 0.577·3-s + (−0.590 − 0.806i)4-s + 1.38i·5-s + (−0.261 + 0.514i)6-s + (−0.986 + 0.161i)8-s + 0.333·9-s + (1.23 + 0.628i)10-s − 1.61i·11-s + (0.340 + 0.465i)12-s − 1.08i·13-s − 0.801i·15-s + (−0.302 + 0.953i)16-s − 1.37i·17-s + (0.150 − 0.297i)18-s − 0.0391·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.704 + 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.704 + 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.430084 - 1.03304i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.430084 - 1.03304i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.639 + 1.26i)T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 3.10iT - 5T^{2} \) |
| 11 | \( 1 + 5.34iT - 11T^{2} \) |
| 13 | \( 1 + 3.92iT - 13T^{2} \) |
| 17 | \( 1 + 5.68iT - 17T^{2} \) |
| 19 | \( 1 + 0.170T + 19T^{2} \) |
| 23 | \( 1 + 6.13iT - 23T^{2} \) |
| 29 | \( 1 + 1.96T + 29T^{2} \) |
| 31 | \( 1 - 1.53T + 31T^{2} \) |
| 37 | \( 1 - 8.93T + 37T^{2} \) |
| 41 | \( 1 - 5.84iT - 41T^{2} \) |
| 43 | \( 1 + 2.38iT - 43T^{2} \) |
| 47 | \( 1 + 2.29T + 47T^{2} \) |
| 53 | \( 1 + 1.19T + 53T^{2} \) |
| 59 | \( 1 + 10.9T + 59T^{2} \) |
| 61 | \( 1 - 6.58iT - 61T^{2} \) |
| 67 | \( 1 - 9.64iT - 67T^{2} \) |
| 71 | \( 1 + 2.04iT - 71T^{2} \) |
| 73 | \( 1 + 10.2iT - 73T^{2} \) |
| 79 | \( 1 + 14.3iT - 79T^{2} \) |
| 83 | \( 1 + 10.9T + 83T^{2} \) |
| 89 | \( 1 + 5.81iT - 89T^{2} \) |
| 97 | \( 1 + 2.32iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60549165118473811409512164793, −9.980208861905069108042470604726, −8.812020518639266538853757483561, −7.61210893216276021140889715594, −6.36273577349597030088216390654, −5.83528969026161052729036223945, −4.66279053565537984740105968125, −3.24716173368295718757460436745, −2.72848621006591660369925944486, −0.60076418645101450947073223526,
1.69219235016130061996777563706, 4.03531849206192405379490504703, 4.58636719009459178099324451771, 5.45492010373388648631169056549, 6.40818424272777509812783397556, 7.38169986699296504760537881130, 8.223746058600037526805092382024, 9.270219114265315504440344477012, 9.753638936969314909320811628960, 11.29178456672630208027775100545