L(s) = 1 | + (−0.476 − 1.33i)2-s − 3-s + (−1.54 + 1.26i)4-s − 0.509i·5-s + (0.476 + 1.33i)6-s + (2.42 + 1.45i)8-s + 9-s + (−0.678 + 0.243i)10-s + 4.12i·11-s + (1.54 − 1.26i)12-s − 3.97i·13-s + 0.509i·15-s + (0.778 − 3.92i)16-s − 4.93i·17-s + (−0.476 − 1.33i)18-s + 5.05·19-s + ⋯ |
L(s) = 1 | + (−0.336 − 0.941i)2-s − 0.577·3-s + (−0.772 + 0.634i)4-s − 0.228i·5-s + (0.194 + 0.543i)6-s + (0.857 + 0.513i)8-s + 0.333·9-s + (−0.214 + 0.0768i)10-s + 1.24i·11-s + (0.446 − 0.366i)12-s − 1.10i·13-s + 0.131i·15-s + (0.194 − 0.980i)16-s − 1.19i·17-s + (−0.112 − 0.313i)18-s + 1.15·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.445 + 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.445 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.443172 - 0.715641i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.443172 - 0.715641i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.476 + 1.33i)T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 0.509iT - 5T^{2} \) |
| 11 | \( 1 - 4.12iT - 11T^{2} \) |
| 13 | \( 1 + 3.97iT - 13T^{2} \) |
| 17 | \( 1 + 4.93iT - 17T^{2} \) |
| 19 | \( 1 - 5.05T + 19T^{2} \) |
| 23 | \( 1 + 2.91iT - 23T^{2} \) |
| 29 | \( 1 + 5.82T + 29T^{2} \) |
| 31 | \( 1 + 5.71T + 31T^{2} \) |
| 37 | \( 1 - 10.0T + 37T^{2} \) |
| 41 | \( 1 + 11.7iT - 41T^{2} \) |
| 43 | \( 1 + 9.84iT - 43T^{2} \) |
| 47 | \( 1 + 7.87T + 47T^{2} \) |
| 53 | \( 1 - 1.23T + 53T^{2} \) |
| 59 | \( 1 - 4.65T + 59T^{2} \) |
| 61 | \( 1 + 0.543iT - 61T^{2} \) |
| 67 | \( 1 + 7.02iT - 67T^{2} \) |
| 71 | \( 1 + 1.06iT - 71T^{2} \) |
| 73 | \( 1 - 0.837iT - 73T^{2} \) |
| 79 | \( 1 - 1.25iT - 79T^{2} \) |
| 83 | \( 1 - 13.7T + 83T^{2} \) |
| 89 | \( 1 - 4.68iT - 89T^{2} \) |
| 97 | \( 1 - 1.80iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45000830781601848837441664961, −9.677234813571228659319604919915, −9.006744775134801188895637099322, −7.69857058712872942582307224884, −7.13233467321143550898500141158, −5.41957340323768218487574404402, −4.81964554301527193591799338919, −3.54470271405179054786278605304, −2.23747750896269435079692223823, −0.66396054035713982276296485623,
1.30524912665631362720422055321, 3.52640011908604988402495134500, 4.70517476670298907958340743048, 5.80599685774670232122478130479, 6.34808965506211194842589526961, 7.36398784806455325836792111749, 8.217853853778889791733306326066, 9.212881270846998161557844899518, 9.889059604228038286586480763982, 11.12290438562394619518571851678