L(s) = 1 | + (0.531 − 2.95i)3-s + (−8.17 + 4.71i)5-s + (−8.43 − 3.14i)9-s + (13.4 + 7.76i)11-s + 6.22·13-s + (9.58 + 26.6i)15-s + (−2.89 − 1.67i)17-s + (−4.46 − 7.73i)19-s + (16.3 − 9.43i)23-s + (32.0 − 55.4i)25-s + (−13.7 + 23.2i)27-s − 41.0i·29-s + (2.35 − 4.07i)31-s + (30.0 − 35.5i)33-s + (21.9 + 37.9i)37-s + ⋯ |
L(s) = 1 | + (0.177 − 0.984i)3-s + (−1.63 + 0.943i)5-s + (−0.937 − 0.349i)9-s + (1.22 + 0.705i)11-s + 0.479·13-s + (0.638 + 1.77i)15-s + (−0.170 − 0.0983i)17-s + (−0.235 − 0.407i)19-s + (0.710 − 0.410i)23-s + (1.28 − 2.21i)25-s + (−0.509 + 0.860i)27-s − 1.41i·29-s + (0.0759 − 0.131i)31-s + (0.911 − 1.07i)33-s + (0.592 + 1.02i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.309443253\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.309443253\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.531 + 2.95i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (8.17 - 4.71i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-13.4 - 7.76i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 - 6.22T + 169T^{2} \) |
| 17 | \( 1 + (2.89 + 1.67i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (4.46 + 7.73i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-16.3 + 9.43i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 41.0iT - 841T^{2} \) |
| 31 | \( 1 + (-2.35 + 4.07i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-21.9 - 37.9i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 46.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 47.8T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-21.1 + 12.1i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-1.86 - 1.07i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (11.0 + 6.38i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-9.94 - 17.2i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-40.4 + 70.0i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 65.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-50.2 + 87.0i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-10.7 - 18.5i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 49.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (40.3 - 23.2i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 36.3T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66624482160188687778241927768, −9.263607084204807475006128344984, −8.365248650086418092581978140080, −7.56528244550561006674705255822, −6.88400698452158762262483706779, −6.26276720337324308709438288869, −4.42650710662714963578491364305, −3.56363125962773121997205700692, −2.41398359031266179487753304950, −0.67497723818562064998195193247,
0.967880031290956788505392344780, 3.32885581581857348737818793684, 3.95345987929905941221560894801, 4.73779241784249056590551885051, 5.85952996882356652025434134427, 7.23654297532133489768084468303, 8.325267897029540407115421906120, 8.786833832931509981150237616877, 9.480257729433207131232642396237, 11.01093397125353001956150041360