L(s) = 1 | + 9·3-s − 78.6·5-s + 81·9-s + 691.·11-s − 818.·13-s − 708.·15-s − 1.10e3·17-s + 573.·19-s + 2.51e3·23-s + 3.06e3·25-s + 729·27-s − 3.25e3·29-s − 1.01e4·31-s + 6.22e3·33-s + 4.86e3·37-s − 7.36e3·39-s + 1.30e4·41-s − 9.30e3·43-s − 6.37e3·45-s − 1.29e4·47-s − 9.98e3·51-s − 1.95e4·53-s − 5.44e4·55-s + 5.15e3·57-s + 2.51e4·59-s + 3.13e4·61-s + 6.44e4·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.40·5-s + 0.333·9-s + 1.72·11-s − 1.34·13-s − 0.812·15-s − 0.930·17-s + 0.364·19-s + 0.992·23-s + 0.980·25-s + 0.192·27-s − 0.719·29-s − 1.89·31-s + 0.994·33-s + 0.584·37-s − 0.775·39-s + 1.21·41-s − 0.767·43-s − 0.469·45-s − 0.852·47-s − 0.537·51-s − 0.955·53-s − 2.42·55-s + 0.210·57-s + 0.939·59-s + 1.07·61-s + 1.89·65-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.766590704 |
L(21) |
≈ |
1.766590704 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 7 | 1 |
good | 5 | 1+78.6T+3.12e3T2 |
| 11 | 1−691.T+1.61e5T2 |
| 13 | 1+818.T+3.71e5T2 |
| 17 | 1+1.10e3T+1.41e6T2 |
| 19 | 1−573.T+2.47e6T2 |
| 23 | 1−2.51e3T+6.43e6T2 |
| 29 | 1+3.25e3T+2.05e7T2 |
| 31 | 1+1.01e4T+2.86e7T2 |
| 37 | 1−4.86e3T+6.93e7T2 |
| 41 | 1−1.30e4T+1.15e8T2 |
| 43 | 1+9.30e3T+1.47e8T2 |
| 47 | 1+1.29e4T+2.29e8T2 |
| 53 | 1+1.95e4T+4.18e8T2 |
| 59 | 1−2.51e4T+7.14e8T2 |
| 61 | 1−3.13e4T+8.44e8T2 |
| 67 | 1−5.59e4T+1.35e9T2 |
| 71 | 1−2.05e4T+1.80e9T2 |
| 73 | 1−6.76e4T+2.07e9T2 |
| 79 | 1−1.40e4T+3.07e9T2 |
| 83 | 1−7.71e4T+3.93e9T2 |
| 89 | 1+320.T+5.58e9T2 |
| 97 | 1−1.12e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.551447390934058706702438166483, −9.134877880326552358716895645280, −8.099043227170712005772906475438, −7.26860516723582170325710347288, −6.69808121762116658713841796084, −5.03250606626888387137054384718, −4.06828331719991921553191082911, −3.42814849294869845924327700258, −2.05406851904030609848654173438, −0.62230237170248182907945090259,
0.62230237170248182907945090259, 2.05406851904030609848654173438, 3.42814849294869845924327700258, 4.06828331719991921553191082911, 5.03250606626888387137054384718, 6.69808121762116658713841796084, 7.26860516723582170325710347288, 8.099043227170712005772906475438, 9.134877880326552358716895645280, 9.551447390934058706702438166483