Properties

Label 2-588-1.1-c5-0-7
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 78.6·5-s + 81·9-s + 691.·11-s − 818.·13-s − 708.·15-s − 1.10e3·17-s + 573.·19-s + 2.51e3·23-s + 3.06e3·25-s + 729·27-s − 3.25e3·29-s − 1.01e4·31-s + 6.22e3·33-s + 4.86e3·37-s − 7.36e3·39-s + 1.30e4·41-s − 9.30e3·43-s − 6.37e3·45-s − 1.29e4·47-s − 9.98e3·51-s − 1.95e4·53-s − 5.44e4·55-s + 5.15e3·57-s + 2.51e4·59-s + 3.13e4·61-s + 6.44e4·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.40·5-s + 0.333·9-s + 1.72·11-s − 1.34·13-s − 0.812·15-s − 0.930·17-s + 0.364·19-s + 0.992·23-s + 0.980·25-s + 0.192·27-s − 0.719·29-s − 1.89·31-s + 0.994·33-s + 0.584·37-s − 0.775·39-s + 1.21·41-s − 0.767·43-s − 0.469·45-s − 0.852·47-s − 0.537·51-s − 0.955·53-s − 2.42·55-s + 0.210·57-s + 0.939·59-s + 1.07·61-s + 1.89·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.766590704\)
\(L(\frac12)\) \(\approx\) \(1.766590704\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
7 \( 1 \)
good5 \( 1 + 78.6T + 3.12e3T^{2} \)
11 \( 1 - 691.T + 1.61e5T^{2} \)
13 \( 1 + 818.T + 3.71e5T^{2} \)
17 \( 1 + 1.10e3T + 1.41e6T^{2} \)
19 \( 1 - 573.T + 2.47e6T^{2} \)
23 \( 1 - 2.51e3T + 6.43e6T^{2} \)
29 \( 1 + 3.25e3T + 2.05e7T^{2} \)
31 \( 1 + 1.01e4T + 2.86e7T^{2} \)
37 \( 1 - 4.86e3T + 6.93e7T^{2} \)
41 \( 1 - 1.30e4T + 1.15e8T^{2} \)
43 \( 1 + 9.30e3T + 1.47e8T^{2} \)
47 \( 1 + 1.29e4T + 2.29e8T^{2} \)
53 \( 1 + 1.95e4T + 4.18e8T^{2} \)
59 \( 1 - 2.51e4T + 7.14e8T^{2} \)
61 \( 1 - 3.13e4T + 8.44e8T^{2} \)
67 \( 1 - 5.59e4T + 1.35e9T^{2} \)
71 \( 1 - 2.05e4T + 1.80e9T^{2} \)
73 \( 1 - 6.76e4T + 2.07e9T^{2} \)
79 \( 1 - 1.40e4T + 3.07e9T^{2} \)
83 \( 1 - 7.71e4T + 3.93e9T^{2} \)
89 \( 1 + 320.T + 5.58e9T^{2} \)
97 \( 1 - 1.12e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.551447390934058706702438166483, −9.134877880326552358716895645280, −8.099043227170712005772906475438, −7.26860516723582170325710347288, −6.69808121762116658713841796084, −5.03250606626888387137054384718, −4.06828331719991921553191082911, −3.42814849294869845924327700258, −2.05406851904030609848654173438, −0.62230237170248182907945090259, 0.62230237170248182907945090259, 2.05406851904030609848654173438, 3.42814849294869845924327700258, 4.06828331719991921553191082911, 5.03250606626888387137054384718, 6.69808121762116658713841796084, 7.26860516723582170325710347288, 8.099043227170712005772906475438, 9.134877880326552358716895645280, 9.551447390934058706702438166483

Graph of the $Z$-function along the critical line