Properties

Label 2-588-1.1-c5-0-4
Degree $2$
Conductor $588$
Sign $1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 46.1·5-s + 81·9-s − 631.·11-s − 1.07e3·13-s − 415.·15-s + 161.·17-s + 1.17e3·19-s + 2.16e3·23-s − 998.·25-s − 729·27-s − 4.49e3·29-s + 318.·31-s + 5.68e3·33-s + 1.51e4·37-s + 9.71e3·39-s + 2.05e4·41-s − 455.·43-s + 3.73e3·45-s − 2.07e4·47-s − 1.45e3·51-s − 1.93e4·53-s − 2.91e4·55-s − 1.05e4·57-s + 6.36e3·59-s − 4.91e4·61-s − 4.97e4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.824·5-s + 0.333·9-s − 1.57·11-s − 1.77·13-s − 0.476·15-s + 0.135·17-s + 0.747·19-s + 0.852·23-s − 0.319·25-s − 0.192·27-s − 0.991·29-s + 0.0594·31-s + 0.908·33-s + 1.82·37-s + 1.02·39-s + 1.91·41-s − 0.0375·43-s + 0.274·45-s − 1.37·47-s − 0.0780·51-s − 0.943·53-s − 1.29·55-s − 0.431·57-s + 0.238·59-s − 1.69·61-s − 1.46·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.356980220\)
\(L(\frac12)\) \(\approx\) \(1.356980220\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
7 \( 1 \)
good5 \( 1 - 46.1T + 3.12e3T^{2} \)
11 \( 1 + 631.T + 1.61e5T^{2} \)
13 \( 1 + 1.07e3T + 3.71e5T^{2} \)
17 \( 1 - 161.T + 1.41e6T^{2} \)
19 \( 1 - 1.17e3T + 2.47e6T^{2} \)
23 \( 1 - 2.16e3T + 6.43e6T^{2} \)
29 \( 1 + 4.49e3T + 2.05e7T^{2} \)
31 \( 1 - 318.T + 2.86e7T^{2} \)
37 \( 1 - 1.51e4T + 6.93e7T^{2} \)
41 \( 1 - 2.05e4T + 1.15e8T^{2} \)
43 \( 1 + 455.T + 1.47e8T^{2} \)
47 \( 1 + 2.07e4T + 2.29e8T^{2} \)
53 \( 1 + 1.93e4T + 4.18e8T^{2} \)
59 \( 1 - 6.36e3T + 7.14e8T^{2} \)
61 \( 1 + 4.91e4T + 8.44e8T^{2} \)
67 \( 1 - 3.40e4T + 1.35e9T^{2} \)
71 \( 1 - 6.29e4T + 1.80e9T^{2} \)
73 \( 1 + 8.86e3T + 2.07e9T^{2} \)
79 \( 1 - 3.44e4T + 3.07e9T^{2} \)
83 \( 1 + 7.04e3T + 3.93e9T^{2} \)
89 \( 1 + 2.02e4T + 5.58e9T^{2} \)
97 \( 1 - 5.40e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.724223006547540992327786473008, −9.540564798091820657595075232742, −7.84431425494172624980308669078, −7.37270635686067023315511277723, −6.09756040032114426162042649551, −5.30618578983063020268865576510, −4.68324149007996098994271096569, −2.93010157898980910543318897937, −2.07640048635663732507483068213, −0.56103016638208437468744430182, 0.56103016638208437468744430182, 2.07640048635663732507483068213, 2.93010157898980910543318897937, 4.68324149007996098994271096569, 5.30618578983063020268865576510, 6.09756040032114426162042649551, 7.37270635686067023315511277723, 7.84431425494172624980308669078, 9.540564798091820657595075232742, 9.724223006547540992327786473008

Graph of the $Z$-function along the critical line