L(s) = 1 | − 9·3-s + 46.1·5-s + 81·9-s − 631.·11-s − 1.07e3·13-s − 415.·15-s + 161.·17-s + 1.17e3·19-s + 2.16e3·23-s − 998.·25-s − 729·27-s − 4.49e3·29-s + 318.·31-s + 5.68e3·33-s + 1.51e4·37-s + 9.71e3·39-s + 2.05e4·41-s − 455.·43-s + 3.73e3·45-s − 2.07e4·47-s − 1.45e3·51-s − 1.93e4·53-s − 2.91e4·55-s − 1.05e4·57-s + 6.36e3·59-s − 4.91e4·61-s − 4.97e4·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.824·5-s + 0.333·9-s − 1.57·11-s − 1.77·13-s − 0.476·15-s + 0.135·17-s + 0.747·19-s + 0.852·23-s − 0.319·25-s − 0.192·27-s − 0.991·29-s + 0.0594·31-s + 0.908·33-s + 1.82·37-s + 1.02·39-s + 1.91·41-s − 0.0375·43-s + 0.274·45-s − 1.37·47-s − 0.0780·51-s − 0.943·53-s − 1.29·55-s − 0.431·57-s + 0.238·59-s − 1.69·61-s − 1.46·65-s + ⋯ |
Λ(s)=(=(588s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(588s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.356980220 |
L(21) |
≈ |
1.356980220 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+9T |
| 7 | 1 |
good | 5 | 1−46.1T+3.12e3T2 |
| 11 | 1+631.T+1.61e5T2 |
| 13 | 1+1.07e3T+3.71e5T2 |
| 17 | 1−161.T+1.41e6T2 |
| 19 | 1−1.17e3T+2.47e6T2 |
| 23 | 1−2.16e3T+6.43e6T2 |
| 29 | 1+4.49e3T+2.05e7T2 |
| 31 | 1−318.T+2.86e7T2 |
| 37 | 1−1.51e4T+6.93e7T2 |
| 41 | 1−2.05e4T+1.15e8T2 |
| 43 | 1+455.T+1.47e8T2 |
| 47 | 1+2.07e4T+2.29e8T2 |
| 53 | 1+1.93e4T+4.18e8T2 |
| 59 | 1−6.36e3T+7.14e8T2 |
| 61 | 1+4.91e4T+8.44e8T2 |
| 67 | 1−3.40e4T+1.35e9T2 |
| 71 | 1−6.29e4T+1.80e9T2 |
| 73 | 1+8.86e3T+2.07e9T2 |
| 79 | 1−3.44e4T+3.07e9T2 |
| 83 | 1+7.04e3T+3.93e9T2 |
| 89 | 1+2.02e4T+5.58e9T2 |
| 97 | 1−5.40e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.724223006547540992327786473008, −9.540564798091820657595075232742, −7.84431425494172624980308669078, −7.37270635686067023315511277723, −6.09756040032114426162042649551, −5.30618578983063020268865576510, −4.68324149007996098994271096569, −2.93010157898980910543318897937, −2.07640048635663732507483068213, −0.56103016638208437468744430182,
0.56103016638208437468744430182, 2.07640048635663732507483068213, 2.93010157898980910543318897937, 4.68324149007996098994271096569, 5.30618578983063020268865576510, 6.09756040032114426162042649551, 7.37270635686067023315511277723, 7.84431425494172624980308669078, 9.540564798091820657595075232742, 9.724223006547540992327786473008