Properties

Label 2-588-1.1-c5-0-25
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $94.3056$
Root an. cond. $9.71111$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 34·5-s + 81·9-s − 332·11-s + 1.02e3·13-s − 306·15-s − 922·17-s − 452·19-s − 3.77e3·23-s − 1.96e3·25-s − 729·27-s + 1.16e3·29-s + 9.79e3·31-s + 2.98e3·33-s + 2.39e3·37-s − 9.23e3·39-s + 7.23e3·41-s + 4.65e3·43-s + 2.75e3·45-s − 2.46e4·47-s + 8.29e3·51-s + 1.11e3·53-s − 1.12e4·55-s + 4.06e3·57-s − 4.68e4·59-s + 9.76e3·61-s + 3.48e4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.608·5-s + 1/3·9-s − 0.827·11-s + 1.68·13-s − 0.351·15-s − 0.773·17-s − 0.287·19-s − 1.48·23-s − 0.630·25-s − 0.192·27-s + 0.257·29-s + 1.83·31-s + 0.477·33-s + 0.287·37-s − 0.972·39-s + 0.671·41-s + 0.383·43-s + 0.202·45-s − 1.62·47-s + 0.446·51-s + 0.0542·53-s − 0.503·55-s + 0.165·57-s − 1.75·59-s + 0.335·61-s + 1.02·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(94.3056\)
Root analytic conductor: \(9.71111\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
7 \( 1 \)
good5 \( 1 - 34 T + p^{5} T^{2} \)
11 \( 1 + 332 T + p^{5} T^{2} \)
13 \( 1 - 1026 T + p^{5} T^{2} \)
17 \( 1 + 922 T + p^{5} T^{2} \)
19 \( 1 + 452 T + p^{5} T^{2} \)
23 \( 1 + 3776 T + p^{5} T^{2} \)
29 \( 1 - 1166 T + p^{5} T^{2} \)
31 \( 1 - 9792 T + p^{5} T^{2} \)
37 \( 1 - 2390 T + p^{5} T^{2} \)
41 \( 1 - 7230 T + p^{5} T^{2} \)
43 \( 1 - 4652 T + p^{5} T^{2} \)
47 \( 1 + 24672 T + p^{5} T^{2} \)
53 \( 1 - 1110 T + p^{5} T^{2} \)
59 \( 1 + 46892 T + p^{5} T^{2} \)
61 \( 1 - 9762 T + p^{5} T^{2} \)
67 \( 1 + 26252 T + p^{5} T^{2} \)
71 \( 1 - 65440 T + p^{5} T^{2} \)
73 \( 1 - 5606 T + p^{5} T^{2} \)
79 \( 1 + 9840 T + p^{5} T^{2} \)
83 \( 1 + 61108 T + p^{5} T^{2} \)
89 \( 1 - 62958 T + p^{5} T^{2} \)
97 \( 1 - 37838 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.657354100114722202553970356612, −8.526089349988505364416914856338, −7.80925921821835176361460696703, −6.23941364260332516456079401392, −6.17492297730751592398327003769, −4.88346513479350880461127393711, −3.87671114838761962616602096941, −2.45757359299401721087276887524, −1.32760186561171369487492882326, 0, 1.32760186561171369487492882326, 2.45757359299401721087276887524, 3.87671114838761962616602096941, 4.88346513479350880461127393711, 6.17492297730751592398327003769, 6.23941364260332516456079401392, 7.80925921821835176361460696703, 8.526089349988505364416914856338, 9.657354100114722202553970356612

Graph of the $Z$-function along the critical line