Properties

Label 2-588-1.1-c5-0-25
Degree 22
Conductor 588588
Sign 1-1
Analytic cond. 94.305694.3056
Root an. cond. 9.711119.71111
Motivic weight 55
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 34·5-s + 81·9-s − 332·11-s + 1.02e3·13-s − 306·15-s − 922·17-s − 452·19-s − 3.77e3·23-s − 1.96e3·25-s − 729·27-s + 1.16e3·29-s + 9.79e3·31-s + 2.98e3·33-s + 2.39e3·37-s − 9.23e3·39-s + 7.23e3·41-s + 4.65e3·43-s + 2.75e3·45-s − 2.46e4·47-s + 8.29e3·51-s + 1.11e3·53-s − 1.12e4·55-s + 4.06e3·57-s − 4.68e4·59-s + 9.76e3·61-s + 3.48e4·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.608·5-s + 1/3·9-s − 0.827·11-s + 1.68·13-s − 0.351·15-s − 0.773·17-s − 0.287·19-s − 1.48·23-s − 0.630·25-s − 0.192·27-s + 0.257·29-s + 1.83·31-s + 0.477·33-s + 0.287·37-s − 0.972·39-s + 0.671·41-s + 0.383·43-s + 0.202·45-s − 1.62·47-s + 0.446·51-s + 0.0542·53-s − 0.503·55-s + 0.165·57-s − 1.75·59-s + 0.335·61-s + 1.02·65-s + ⋯

Functional equation

Λ(s)=(588s/2ΓC(s)L(s)=(Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}
Λ(s)=(588s/2ΓC(s+5/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 588588    =    223722^{2} \cdot 3 \cdot 7^{2}
Sign: 1-1
Analytic conductor: 94.305694.3056
Root analytic conductor: 9.711119.71111
Motivic weight: 55
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 588, ( :5/2), 1)(2,\ 588,\ (\ :5/2),\ -1)

Particular Values

L(3)L(3) == 00
L(12)L(\frac12) == 00
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+p2T 1 + p^{2} T
7 1 1
good5 134T+p5T2 1 - 34 T + p^{5} T^{2}
11 1+332T+p5T2 1 + 332 T + p^{5} T^{2}
13 11026T+p5T2 1 - 1026 T + p^{5} T^{2}
17 1+922T+p5T2 1 + 922 T + p^{5} T^{2}
19 1+452T+p5T2 1 + 452 T + p^{5} T^{2}
23 1+3776T+p5T2 1 + 3776 T + p^{5} T^{2}
29 11166T+p5T2 1 - 1166 T + p^{5} T^{2}
31 19792T+p5T2 1 - 9792 T + p^{5} T^{2}
37 12390T+p5T2 1 - 2390 T + p^{5} T^{2}
41 17230T+p5T2 1 - 7230 T + p^{5} T^{2}
43 14652T+p5T2 1 - 4652 T + p^{5} T^{2}
47 1+24672T+p5T2 1 + 24672 T + p^{5} T^{2}
53 11110T+p5T2 1 - 1110 T + p^{5} T^{2}
59 1+46892T+p5T2 1 + 46892 T + p^{5} T^{2}
61 19762T+p5T2 1 - 9762 T + p^{5} T^{2}
67 1+26252T+p5T2 1 + 26252 T + p^{5} T^{2}
71 165440T+p5T2 1 - 65440 T + p^{5} T^{2}
73 15606T+p5T2 1 - 5606 T + p^{5} T^{2}
79 1+9840T+p5T2 1 + 9840 T + p^{5} T^{2}
83 1+61108T+p5T2 1 + 61108 T + p^{5} T^{2}
89 162958T+p5T2 1 - 62958 T + p^{5} T^{2}
97 137838T+p5T2 1 - 37838 T + p^{5} T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.657354100114722202553970356612, −8.526089349988505364416914856338, −7.80925921821835176361460696703, −6.23941364260332516456079401392, −6.17492297730751592398327003769, −4.88346513479350880461127393711, −3.87671114838761962616602096941, −2.45757359299401721087276887524, −1.32760186561171369487492882326, 0, 1.32760186561171369487492882326, 2.45757359299401721087276887524, 3.87671114838761962616602096941, 4.88346513479350880461127393711, 6.17492297730751592398327003769, 6.23941364260332516456079401392, 7.80925921821835176361460696703, 8.526089349988505364416914856338, 9.657354100114722202553970356612

Graph of the ZZ-function along the critical line