L(s) = 1 | + 2-s + 4-s − 5-s + 8-s + 9-s − 10-s + 16-s − 2·17-s + 18-s − 20-s + 25-s − 29-s + 32-s − 2·34-s + 36-s − 2·37-s − 40-s − 45-s − 49-s + 50-s − 58-s + 64-s − 2·68-s + 72-s + 2·73-s − 2·74-s − 80-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 5-s + 8-s + 9-s − 10-s + 16-s − 2·17-s + 18-s − 20-s + 25-s − 29-s + 32-s − 2·34-s + 36-s − 2·37-s − 40-s − 45-s − 49-s + 50-s − 58-s + 64-s − 2·68-s + 72-s + 2·73-s − 2·74-s − 80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.462512404\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.462512404\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 + T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 + T )^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 + T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08736269062704702044037663996, −10.44269410440832008543693005495, −9.133384151229510254261521952647, −8.033810394382029849841899126232, −7.08976422143673490594864795564, −6.56753479260130438460504963730, −5.08273594341290074411568750469, −4.30167398370409115662946164621, −3.49430697897175681395203874488, −1.98364805092622174881950652951,
1.98364805092622174881950652951, 3.49430697897175681395203874488, 4.30167398370409115662946164621, 5.08273594341290074411568750469, 6.56753479260130438460504963730, 7.08976422143673490594864795564, 8.033810394382029849841899126232, 9.133384151229510254261521952647, 10.44269410440832008543693005495, 11.08736269062704702044037663996