Properties

Label 2-580-580.579-c0-0-3
Degree $2$
Conductor $580$
Sign $1$
Analytic cond. $0.289457$
Root an. cond. $0.538012$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 9-s + 10-s + 16-s + 2·17-s − 18-s − 20-s + 25-s − 29-s − 32-s − 2·34-s + 36-s + 2·37-s + 40-s − 45-s − 49-s − 50-s + 58-s + 64-s + 2·68-s − 72-s − 2·73-s − 2·74-s − 80-s + ⋯
L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 9-s + 10-s + 16-s + 2·17-s − 18-s − 20-s + 25-s − 29-s − 32-s − 2·34-s + 36-s + 2·37-s + 40-s − 45-s − 49-s − 50-s + 58-s + 64-s + 2·68-s − 72-s − 2·73-s − 2·74-s − 80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(580\)    =    \(2^{2} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(0.289457\)
Root analytic conductor: \(0.538012\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{580} (579, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 580,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5680054292\)
\(L(\frac12)\) \(\approx\) \(0.5680054292\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( ( 1 - T )( 1 + T ) \)
7 \( 1 + T^{2} \)
11 \( 1 + T^{2} \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )^{2} \)
19 \( 1 + T^{2} \)
23 \( 1 + T^{2} \)
31 \( 1 + T^{2} \)
37 \( ( 1 - T )^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 + T^{2} \)
71 \( ( 1 - T )( 1 + T ) \)
73 \( ( 1 + T )^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + T^{2} \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81539284750375827913230940593, −9.957890858742709535630352227905, −9.299734628084661753224857786227, −8.014701849402231805217648020722, −7.68276332672375064854797600903, −6.78791286064728920292159904732, −5.57188153400065765493474575180, −4.12322181678785183171852145682, −3.04358024235575159745522113273, −1.27890524100705199735483507800, 1.27890524100705199735483507800, 3.04358024235575159745522113273, 4.12322181678785183171852145682, 5.57188153400065765493474575180, 6.78791286064728920292159904732, 7.68276332672375064854797600903, 8.014701849402231805217648020722, 9.299734628084661753224857786227, 9.957890858742709535630352227905, 10.81539284750375827913230940593

Graph of the $Z$-function along the critical line