L(s) = 1 | − 2.30i·3-s + i·5-s + 1.53i·7-s − 2.30·9-s + 2.44i·11-s − 6.18·13-s + 2.30·15-s + 0.345·19-s + 3.52·21-s − 9.04i·23-s − 25-s − 1.60i·27-s + 5.05i·29-s + 2.71i·31-s + 5.63·33-s + ⋯ |
L(s) = 1 | − 1.32i·3-s + 0.447i·5-s + 0.579i·7-s − 0.767·9-s + 0.738i·11-s − 1.71·13-s + 0.594·15-s + 0.0793·19-s + 0.769·21-s − 1.88i·23-s − 0.200·25-s − 0.308i·27-s + 0.938i·29-s + 0.486i·31-s + 0.981·33-s + ⋯ |
Λ(s)=(=(5780s/2ΓC(s)L(s)(0.410+0.911i)Λ(2−s)
Λ(s)=(=(5780s/2ΓC(s+1/2)L(s)(0.410+0.911i)Λ(1−s)
Degree: |
2 |
Conductor: |
5780
= 22⋅5⋅172
|
Sign: |
0.410+0.911i
|
Analytic conductor: |
46.1535 |
Root analytic conductor: |
6.79363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5780(5201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5780, ( :1/2), 0.410+0.911i)
|
Particular Values
L(1) |
≈ |
1.513903208 |
L(21) |
≈ |
1.513903208 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−iT |
| 17 | 1 |
good | 3 | 1+2.30iT−3T2 |
| 7 | 1−1.53iT−7T2 |
| 11 | 1−2.44iT−11T2 |
| 13 | 1+6.18T+13T2 |
| 19 | 1−0.345T+19T2 |
| 23 | 1+9.04iT−23T2 |
| 29 | 1−5.05iT−29T2 |
| 31 | 1−2.71iT−31T2 |
| 37 | 1−4.08iT−37T2 |
| 41 | 1−1.14iT−41T2 |
| 43 | 1+0.730T+43T2 |
| 47 | 1−0.594T+47T2 |
| 53 | 1−9.59T+53T2 |
| 59 | 1+6.74T+59T2 |
| 61 | 1+10.5iT−61T2 |
| 67 | 1−12.3T+67T2 |
| 71 | 1+1.08iT−71T2 |
| 73 | 1+9.34iT−73T2 |
| 79 | 1+11.0iT−79T2 |
| 83 | 1−12.2T+83T2 |
| 89 | 1+10.8T+89T2 |
| 97 | 1+6.97iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.77975553480604102207728928917, −7.19478664656751994390089730872, −6.74065131060740363997320951865, −6.11868287843021566638521971557, −5.06833929298112410562496119840, −4.55193722397575006284503931455, −3.16374752074263549960604820073, −2.35000204418516994607181415005, −1.94174754753309377127823620623, −0.54872758305278421388028890360,
0.73182691918898281799742053767, 2.17352207488376703431927761323, 3.20568799675767873080319311155, 3.99593778532281431890572818747, 4.45462429009808348939356083208, 5.42893500431320514140006235586, 5.62883532779518287794389279656, 7.01025622796444784344242201226, 7.53316308928049655043086178483, 8.309193080517299212689390768079