L(s) = 1 | − 2.30i·3-s + i·5-s + 1.53i·7-s − 2.30·9-s + 2.44i·11-s − 6.18·13-s + 2.30·15-s + 0.345·19-s + 3.52·21-s − 9.04i·23-s − 25-s − 1.60i·27-s + 5.05i·29-s + 2.71i·31-s + 5.63·33-s + ⋯ |
L(s) = 1 | − 1.32i·3-s + 0.447i·5-s + 0.579i·7-s − 0.767·9-s + 0.738i·11-s − 1.71·13-s + 0.594·15-s + 0.0793·19-s + 0.769·21-s − 1.88i·23-s − 0.200·25-s − 0.308i·27-s + 0.938i·29-s + 0.486i·31-s + 0.981·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.410 + 0.911i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.410 + 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.513903208\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.513903208\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + 2.30iT - 3T^{2} \) |
| 7 | \( 1 - 1.53iT - 7T^{2} \) |
| 11 | \( 1 - 2.44iT - 11T^{2} \) |
| 13 | \( 1 + 6.18T + 13T^{2} \) |
| 19 | \( 1 - 0.345T + 19T^{2} \) |
| 23 | \( 1 + 9.04iT - 23T^{2} \) |
| 29 | \( 1 - 5.05iT - 29T^{2} \) |
| 31 | \( 1 - 2.71iT - 31T^{2} \) |
| 37 | \( 1 - 4.08iT - 37T^{2} \) |
| 41 | \( 1 - 1.14iT - 41T^{2} \) |
| 43 | \( 1 + 0.730T + 43T^{2} \) |
| 47 | \( 1 - 0.594T + 47T^{2} \) |
| 53 | \( 1 - 9.59T + 53T^{2} \) |
| 59 | \( 1 + 6.74T + 59T^{2} \) |
| 61 | \( 1 + 10.5iT - 61T^{2} \) |
| 67 | \( 1 - 12.3T + 67T^{2} \) |
| 71 | \( 1 + 1.08iT - 71T^{2} \) |
| 73 | \( 1 + 9.34iT - 73T^{2} \) |
| 79 | \( 1 + 11.0iT - 79T^{2} \) |
| 83 | \( 1 - 12.2T + 83T^{2} \) |
| 89 | \( 1 + 10.8T + 89T^{2} \) |
| 97 | \( 1 + 6.97iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.77975553480604102207728928917, −7.19478664656751994390089730872, −6.74065131060740363997320951865, −6.11868287843021566638521971557, −5.06833929298112410562496119840, −4.55193722397575006284503931455, −3.16374752074263549960604820073, −2.35000204418516994607181415005, −1.94174754753309377127823620623, −0.54872758305278421388028890360,
0.73182691918898281799742053767, 2.17352207488376703431927761323, 3.20568799675767873080319311155, 3.99593778532281431890572818747, 4.45462429009808348939356083208, 5.42893500431320514140006235586, 5.62883532779518287794389279656, 7.01025622796444784344242201226, 7.53316308928049655043086178483, 8.309193080517299212689390768079