Properties

Label 2-5766-1.1-c1-0-140
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 0.888·5-s − 6-s + 1.76·7-s − 8-s + 9-s + 0.888·10-s + 6.55·11-s + 12-s − 3.30·13-s − 1.76·14-s − 0.888·15-s + 16-s + 3.40·17-s − 18-s − 5.20·19-s − 0.888·20-s + 1.76·21-s − 6.55·22-s − 7.41·23-s − 24-s − 4.20·25-s + 3.30·26-s + 27-s + 1.76·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.397·5-s − 0.408·6-s + 0.666·7-s − 0.353·8-s + 0.333·9-s + 0.281·10-s + 1.97·11-s + 0.288·12-s − 0.915·13-s − 0.471·14-s − 0.229·15-s + 0.250·16-s + 0.826·17-s − 0.235·18-s − 1.19·19-s − 0.198·20-s + 0.384·21-s − 1.39·22-s − 1.54·23-s − 0.204·24-s − 0.841·25-s + 0.647·26-s + 0.192·27-s + 0.333·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
31 \( 1 \)
good5 \( 1 + 0.888T + 5T^{2} \)
7 \( 1 - 1.76T + 7T^{2} \)
11 \( 1 - 6.55T + 11T^{2} \)
13 \( 1 + 3.30T + 13T^{2} \)
17 \( 1 - 3.40T + 17T^{2} \)
19 \( 1 + 5.20T + 19T^{2} \)
23 \( 1 + 7.41T + 23T^{2} \)
29 \( 1 + 2.59T + 29T^{2} \)
37 \( 1 + 6.52T + 37T^{2} \)
41 \( 1 + 8.88T + 41T^{2} \)
43 \( 1 - 3.58T + 43T^{2} \)
47 \( 1 + 8.79T + 47T^{2} \)
53 \( 1 + 5.06T + 53T^{2} \)
59 \( 1 + 9.14T + 59T^{2} \)
61 \( 1 - 0.160T + 61T^{2} \)
67 \( 1 - 13.3T + 67T^{2} \)
71 \( 1 + 2.74T + 71T^{2} \)
73 \( 1 + 2.96T + 73T^{2} \)
79 \( 1 + 10.6T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 + 0.825T + 89T^{2} \)
97 \( 1 - 0.815T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.985916417967283223911624221369, −7.19581341053458149186141683327, −6.57317183073842193484368383539, −5.79691578790525626542907422032, −4.64242427019056965434433017121, −3.96851942248384403393433091246, −3.28437599092829611530885521049, −1.93951965578979330375919762005, −1.57819149758067064626497707770, 0, 1.57819149758067064626497707770, 1.93951965578979330375919762005, 3.28437599092829611530885521049, 3.96851942248384403393433091246, 4.64242427019056965434433017121, 5.79691578790525626542907422032, 6.57317183073842193484368383539, 7.19581341053458149186141683327, 7.985916417967283223911624221369

Graph of the $Z$-function along the critical line