Properties

Label 2-5766-1.1-c1-0-127
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 3.44·5-s + 6-s − 1.17·7-s + 8-s + 9-s − 3.44·10-s − 0.720·11-s + 12-s + 2.74·13-s − 1.17·14-s − 3.44·15-s + 16-s − 4.40·17-s + 18-s + 3.34·19-s − 3.44·20-s − 1.17·21-s − 0.720·22-s + 0.627·23-s + 24-s + 6.86·25-s + 2.74·26-s + 27-s − 1.17·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.54·5-s + 0.408·6-s − 0.443·7-s + 0.353·8-s + 0.333·9-s − 1.08·10-s − 0.217·11-s + 0.288·12-s + 0.761·13-s − 0.313·14-s − 0.889·15-s + 0.250·16-s − 1.06·17-s + 0.235·18-s + 0.766·19-s − 0.770·20-s − 0.255·21-s − 0.153·22-s + 0.130·23-s + 0.204·24-s + 1.37·25-s + 0.538·26-s + 0.192·27-s − 0.221·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
31 \( 1 \)
good5 \( 1 + 3.44T + 5T^{2} \)
7 \( 1 + 1.17T + 7T^{2} \)
11 \( 1 + 0.720T + 11T^{2} \)
13 \( 1 - 2.74T + 13T^{2} \)
17 \( 1 + 4.40T + 17T^{2} \)
19 \( 1 - 3.34T + 19T^{2} \)
23 \( 1 - 0.627T + 23T^{2} \)
29 \( 1 - 2.84T + 29T^{2} \)
37 \( 1 + 11.1T + 37T^{2} \)
41 \( 1 + 10.2T + 41T^{2} \)
43 \( 1 - 10.0T + 43T^{2} \)
47 \( 1 - 5.14T + 47T^{2} \)
53 \( 1 + 10.2T + 53T^{2} \)
59 \( 1 - 10.0T + 59T^{2} \)
61 \( 1 + 3.58T + 61T^{2} \)
67 \( 1 + 11.7T + 67T^{2} \)
71 \( 1 + 5.04T + 71T^{2} \)
73 \( 1 - 0.479T + 73T^{2} \)
79 \( 1 - 1.45T + 79T^{2} \)
83 \( 1 + 14.2T + 83T^{2} \)
89 \( 1 + 10.1T + 89T^{2} \)
97 \( 1 + 2.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67404475522218620841817392205, −7.05570986019467886435614746024, −6.51962342516656147745394260669, −5.46950235670480571627276720213, −4.60498560010003164625746757536, −3.98332148907310074258940580935, −3.35541928939274353140206908350, −2.75882743545526640879197384021, −1.45468044805210522493261786601, 0, 1.45468044805210522493261786601, 2.75882743545526640879197384021, 3.35541928939274353140206908350, 3.98332148907310074258940580935, 4.60498560010003164625746757536, 5.46950235670480571627276720213, 6.51962342516656147745394260669, 7.05570986019467886435614746024, 7.67404475522218620841817392205

Graph of the $Z$-function along the critical line