Properties

Label 2-5766-1.1-c1-0-117
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 1.23·5-s − 6-s − 1.61·7-s − 8-s + 9-s − 1.23·10-s − 0.763·11-s + 12-s − 3.85·13-s + 1.61·14-s + 1.23·15-s + 16-s + 1.23·17-s − 18-s + 0.618·19-s + 1.23·20-s − 1.61·21-s + 0.763·22-s − 4.47·23-s − 24-s − 3.47·25-s + 3.85·26-s + 27-s − 1.61·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.552·5-s − 0.408·6-s − 0.611·7-s − 0.353·8-s + 0.333·9-s − 0.390·10-s − 0.230·11-s + 0.288·12-s − 1.06·13-s + 0.432·14-s + 0.319·15-s + 0.250·16-s + 0.299·17-s − 0.235·18-s + 0.141·19-s + 0.276·20-s − 0.353·21-s + 0.162·22-s − 0.932·23-s − 0.204·24-s − 0.694·25-s + 0.755·26-s + 0.192·27-s − 0.305·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
31 \( 1 \)
good5 \( 1 - 1.23T + 5T^{2} \)
7 \( 1 + 1.61T + 7T^{2} \)
11 \( 1 + 0.763T + 11T^{2} \)
13 \( 1 + 3.85T + 13T^{2} \)
17 \( 1 - 1.23T + 17T^{2} \)
19 \( 1 - 0.618T + 19T^{2} \)
23 \( 1 + 4.47T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
37 \( 1 - 10.8T + 37T^{2} \)
41 \( 1 + 0.472T + 41T^{2} \)
43 \( 1 - 0.381T + 43T^{2} \)
47 \( 1 + 1.70T + 47T^{2} \)
53 \( 1 + 0.763T + 53T^{2} \)
59 \( 1 + 6.76T + 59T^{2} \)
61 \( 1 + 1.09T + 61T^{2} \)
67 \( 1 - 3.38T + 67T^{2} \)
71 \( 1 - 6.47T + 71T^{2} \)
73 \( 1 + 13.6T + 73T^{2} \)
79 \( 1 + 2.61T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 + 16T + 89T^{2} \)
97 \( 1 + 3.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.905934469113832378847682768809, −7.21117575846749115427774350301, −6.41970328860297518514329823571, −5.83617341376181545776366604311, −4.86585656488935193425799695504, −3.94475216554488954829426898093, −2.87796836306277585670592466688, −2.41660207313527065507978661543, −1.37581589487773963178203556102, 0, 1.37581589487773963178203556102, 2.41660207313527065507978661543, 2.87796836306277585670592466688, 3.94475216554488954829426898093, 4.86585656488935193425799695504, 5.83617341376181545776366604311, 6.41970328860297518514329823571, 7.21117575846749115427774350301, 7.905934469113832378847682768809

Graph of the $Z$-function along the critical line