Properties

Label 2-575-115.114-c0-0-3
Degree $2$
Conductor $575$
Sign $0.894 + 0.447i$
Analytic cond. $0.286962$
Root an. cond. $0.535688$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + i·3-s + 6-s i·8-s + i·13-s − 16-s i·23-s + 24-s + 26-s + i·27-s + 29-s − 31-s − 39-s − 41-s − 46-s i·47-s + ⋯
L(s)  = 1  i·2-s + i·3-s + 6-s i·8-s + i·13-s − 16-s i·23-s + 24-s + 26-s + i·27-s + 29-s − 31-s − 39-s − 41-s − 46-s i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(575\)    =    \(5^{2} \cdot 23\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(0.286962\)
Root analytic conductor: \(0.535688\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{575} (574, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 575,\ (\ :0),\ 0.894 + 0.447i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.021294606\)
\(L(\frac12)\) \(\approx\) \(1.021294606\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
23 \( 1 + iT \)
good2 \( 1 + iT - T^{2} \)
3 \( 1 - iT - T^{2} \)
7 \( 1 + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - iT - T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 - T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 + iT - T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 + 2T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + T^{2} \)
71 \( 1 + T + T^{2} \)
73 \( 1 - iT - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77067463766286194891790003929, −10.18058992315420349617663149641, −9.456585724295044641256665549481, −8.652200409677998182953046443468, −7.20606564791886697847592394754, −6.36250787984513985217524162647, −4.86152338754019419567466716310, −4.08694676575196260781789254721, −3.11637946849736173689483765439, −1.77729498819638364327312025721, 1.68386444314566656807282380129, 3.08725306834997735310018264887, 4.82604822745653848080637946004, 5.85888635409380811003523097697, 6.56296413536121853986544185145, 7.51645198797023996243272444032, 7.86839768481314197275041051610, 8.895171688336434243859849142807, 10.11668434567482410329629745273, 11.08980278915461948893475849611

Graph of the $Z$-function along the critical line