L(s) = 1 | + 0.381·2-s − 1.85·4-s + 2.23·5-s − 1.47·8-s + 0.854·10-s + 3·11-s − 13-s + 3.14·16-s + 7.47·17-s + 3·19-s − 4.14·20-s + 1.14·22-s + 3.76·23-s − 0.381·26-s + 4.47·29-s + 5·31-s + 4.14·32-s + 2.85·34-s − 8.70·37-s + 1.14·38-s − 3.29·40-s − 4.47·41-s − 8·43-s − 5.56·44-s + 1.43·46-s − 1.47·47-s + 1.85·52-s + ⋯ |
L(s) = 1 | + 0.270·2-s − 0.927·4-s + 0.999·5-s − 0.520·8-s + 0.270·10-s + 0.904·11-s − 0.277·13-s + 0.786·16-s + 1.81·17-s + 0.688·19-s − 0.927·20-s + 0.244·22-s + 0.784·23-s − 0.0749·26-s + 0.830·29-s + 0.898·31-s + 0.732·32-s + 0.489·34-s − 1.43·37-s + 0.185·38-s − 0.520·40-s − 0.698·41-s − 1.21·43-s − 0.838·44-s + 0.211·46-s − 0.214·47-s + 0.257·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5733 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.539561907\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.539561907\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 - 0.381T + 2T^{2} \) |
| 5 | \( 1 - 2.23T + 5T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 17 | \( 1 - 7.47T + 17T^{2} \) |
| 19 | \( 1 - 3T + 19T^{2} \) |
| 23 | \( 1 - 3.76T + 23T^{2} \) |
| 29 | \( 1 - 4.47T + 29T^{2} \) |
| 31 | \( 1 - 5T + 31T^{2} \) |
| 37 | \( 1 + 8.70T + 37T^{2} \) |
| 41 | \( 1 + 4.47T + 41T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + 1.47T + 47T^{2} \) |
| 53 | \( 1 + 1.47T + 53T^{2} \) |
| 59 | \( 1 + 7.47T + 59T^{2} \) |
| 61 | \( 1 - 3T + 61T^{2} \) |
| 67 | \( 1 + 3T + 67T^{2} \) |
| 71 | \( 1 + 8.94T + 71T^{2} \) |
| 73 | \( 1 - 10.7T + 73T^{2} \) |
| 79 | \( 1 - 10.7T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 2.23T + 89T^{2} \) |
| 97 | \( 1 + 17.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.270612109086063232287708959359, −7.39496068555586426443115287178, −6.52839518284144799122193282594, −5.86322008664896671218046157369, −5.17501842036711965255703147720, −4.69777243122186607431825797567, −3.50998178364644846807811630612, −3.11108144127331549652676534880, −1.70417661669501108230058458565, −0.883430952743246814743964384621,
0.883430952743246814743964384621, 1.70417661669501108230058458565, 3.11108144127331549652676534880, 3.50998178364644846807811630612, 4.69777243122186607431825797567, 5.17501842036711965255703147720, 5.86322008664896671218046157369, 6.52839518284144799122193282594, 7.39496068555586426443115287178, 8.270612109086063232287708959359