L(s) = 1 | + 0.381·2-s − 1.85·4-s + 2.23·5-s − 1.47·8-s + 0.854·10-s + 3·11-s − 13-s + 3.14·16-s + 7.47·17-s + 3·19-s − 4.14·20-s + 1.14·22-s + 3.76·23-s − 0.381·26-s + 4.47·29-s + 5·31-s + 4.14·32-s + 2.85·34-s − 8.70·37-s + 1.14·38-s − 3.29·40-s − 4.47·41-s − 8·43-s − 5.56·44-s + 1.43·46-s − 1.47·47-s + 1.85·52-s + ⋯ |
L(s) = 1 | + 0.270·2-s − 0.927·4-s + 0.999·5-s − 0.520·8-s + 0.270·10-s + 0.904·11-s − 0.277·13-s + 0.786·16-s + 1.81·17-s + 0.688·19-s − 0.927·20-s + 0.244·22-s + 0.784·23-s − 0.0749·26-s + 0.830·29-s + 0.898·31-s + 0.732·32-s + 0.489·34-s − 1.43·37-s + 0.185·38-s − 0.520·40-s − 0.698·41-s − 1.21·43-s − 0.838·44-s + 0.211·46-s − 0.214·47-s + 0.257·52-s + ⋯ |
Λ(s)=(=(5733s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5733s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.539561907 |
L(21) |
≈ |
2.539561907 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1+T |
good | 2 | 1−0.381T+2T2 |
| 5 | 1−2.23T+5T2 |
| 11 | 1−3T+11T2 |
| 17 | 1−7.47T+17T2 |
| 19 | 1−3T+19T2 |
| 23 | 1−3.76T+23T2 |
| 29 | 1−4.47T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1+8.70T+37T2 |
| 41 | 1+4.47T+41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1+1.47T+47T2 |
| 53 | 1+1.47T+53T2 |
| 59 | 1+7.47T+59T2 |
| 61 | 1−3T+61T2 |
| 67 | 1+3T+67T2 |
| 71 | 1+8.94T+71T2 |
| 73 | 1−10.7T+73T2 |
| 79 | 1−10.7T+79T2 |
| 83 | 1+83T2 |
| 89 | 1−2.23T+89T2 |
| 97 | 1+17.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.270612109086063232287708959359, −7.39496068555586426443115287178, −6.52839518284144799122193282594, −5.86322008664896671218046157369, −5.17501842036711965255703147720, −4.69777243122186607431825797567, −3.50998178364644846807811630612, −3.11108144127331549652676534880, −1.70417661669501108230058458565, −0.883430952743246814743964384621,
0.883430952743246814743964384621, 1.70417661669501108230058458565, 3.11108144127331549652676534880, 3.50998178364644846807811630612, 4.69777243122186607431825797567, 5.17501842036711965255703147720, 5.86322008664896671218046157369, 6.52839518284144799122193282594, 7.39496068555586426443115287178, 8.270612109086063232287708959359