L(s) = 1 | + 1.17·2-s − 0.616·4-s + 3.14·5-s − 3.07·8-s + 3.70·10-s + 0.773·11-s − 13-s − 2.38·16-s − 5.75·17-s + 1.22·19-s − 1.94·20-s + 0.909·22-s + 2.99·23-s + 4.91·25-s − 1.17·26-s + 2.46·29-s + 6.13·31-s + 3.34·32-s − 6.76·34-s + 4.99·37-s + 1.43·38-s − 9.69·40-s − 2.55·41-s − 2.73·43-s − 0.476·44-s + 3.51·46-s + 5.37·47-s + ⋯ |
L(s) = 1 | + 0.831·2-s − 0.308·4-s + 1.40·5-s − 1.08·8-s + 1.17·10-s + 0.233·11-s − 0.277·13-s − 0.596·16-s − 1.39·17-s + 0.280·19-s − 0.434·20-s + 0.193·22-s + 0.623·23-s + 0.982·25-s − 0.230·26-s + 0.458·29-s + 1.10·31-s + 0.591·32-s − 1.16·34-s + 0.821·37-s + 0.233·38-s − 1.53·40-s − 0.399·41-s − 0.416·43-s − 0.0718·44-s + 0.518·46-s + 0.783·47-s + ⋯ |
Λ(s)=(=(5733s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5733s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.265283655 |
L(21) |
≈ |
3.265283655 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1+T |
good | 2 | 1−1.17T+2T2 |
| 5 | 1−3.14T+5T2 |
| 11 | 1−0.773T+11T2 |
| 17 | 1+5.75T+17T2 |
| 19 | 1−1.22T+19T2 |
| 23 | 1−2.99T+23T2 |
| 29 | 1−2.46T+29T2 |
| 31 | 1−6.13T+31T2 |
| 37 | 1−4.99T+37T2 |
| 41 | 1+2.55T+41T2 |
| 43 | 1+2.73T+43T2 |
| 47 | 1−5.37T+47T2 |
| 53 | 1−9.79T+53T2 |
| 59 | 1−2.50T+59T2 |
| 61 | 1−10.9T+61T2 |
| 67 | 1−4.32T+67T2 |
| 71 | 1+10.6T+71T2 |
| 73 | 1−5.17T+73T2 |
| 79 | 1+0.542T+79T2 |
| 83 | 1−15.2T+83T2 |
| 89 | 1−9.23T+89T2 |
| 97 | 1−1.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.330781053407755540629480184515, −7.08266807768052354606464084676, −6.45767633932950488412713987783, −5.91988538438232919854733187587, −5.14650410777053655462709631322, −4.64550056822500227159722985399, −3.79781777032719919896746753269, −2.73803075443526072774414710598, −2.18420729495515010390116591407, −0.851841989603352015285704727387,
0.851841989603352015285704727387, 2.18420729495515010390116591407, 2.73803075443526072774414710598, 3.79781777032719919896746753269, 4.64550056822500227159722985399, 5.14650410777053655462709631322, 5.91988538438232919854733187587, 6.45767633932950488412713987783, 7.08266807768052354606464084676, 8.330781053407755540629480184515