L(s) = 1 | + 2.44·2-s + 3.99·4-s + 0.910·5-s + 4.87·8-s + 2.22·10-s − 3.67·11-s − 13-s + 3.95·16-s + 7.18·17-s + 1.97·19-s + 3.63·20-s − 9.00·22-s + 0.596·23-s − 4.17·25-s − 2.44·26-s + 3.64·29-s + 7.08·31-s − 0.0786·32-s + 17.5·34-s + 0.710·37-s + 4.84·38-s + 4.43·40-s + 5.27·41-s + 11.0·43-s − 14.6·44-s + 1.46·46-s + 12.1·47-s + ⋯ |
L(s) = 1 | + 1.73·2-s + 1.99·4-s + 0.407·5-s + 1.72·8-s + 0.704·10-s − 1.10·11-s − 0.277·13-s + 0.987·16-s + 1.74·17-s + 0.453·19-s + 0.812·20-s − 1.91·22-s + 0.124·23-s − 0.834·25-s − 0.480·26-s + 0.677·29-s + 1.27·31-s − 0.0139·32-s + 3.01·34-s + 0.116·37-s + 0.785·38-s + 0.701·40-s + 0.823·41-s + 1.68·43-s − 2.21·44-s + 0.215·46-s + 1.76·47-s + ⋯ |
Λ(s)=(=(5733s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5733s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.510829253 |
L(21) |
≈ |
6.510829253 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1+T |
good | 2 | 1−2.44T+2T2 |
| 5 | 1−0.910T+5T2 |
| 11 | 1+3.67T+11T2 |
| 17 | 1−7.18T+17T2 |
| 19 | 1−1.97T+19T2 |
| 23 | 1−0.596T+23T2 |
| 29 | 1−3.64T+29T2 |
| 31 | 1−7.08T+31T2 |
| 37 | 1−0.710T+37T2 |
| 41 | 1−5.27T+41T2 |
| 43 | 1−11.0T+43T2 |
| 47 | 1−12.1T+47T2 |
| 53 | 1−11.4T+53T2 |
| 59 | 1−9.58T+59T2 |
| 61 | 1+6.98T+61T2 |
| 67 | 1−1.22T+67T2 |
| 71 | 1+11.3T+71T2 |
| 73 | 1+6.53T+73T2 |
| 79 | 1+11.5T+79T2 |
| 83 | 1−7.16T+83T2 |
| 89 | 1−12.8T+89T2 |
| 97 | 1+9.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.55672720972543977570327098006, −7.50611141007961290864308855772, −6.33199337022978923502086042326, −5.61763954418002696913496740009, −5.43029422686498172875242121096, −4.48267677594962619251184766592, −3.80712864267146896367255347370, −2.76088185299542786441067534025, −2.51122998091485589399661627935, −1.08979065815532064532752235635,
1.08979065815532064532752235635, 2.51122998091485589399661627935, 2.76088185299542786441067534025, 3.80712864267146896367255347370, 4.48267677594962619251184766592, 5.43029422686498172875242121096, 5.61763954418002696913496740009, 6.33199337022978923502086042326, 7.50611141007961290864308855772, 7.55672720972543977570327098006