L(s) = 1 | + 2.61·2-s + 4.85·4-s − 2.23·5-s + 7.47·8-s − 5.85·10-s + 3·11-s − 13-s + 9.85·16-s − 1.47·17-s + 3·19-s − 10.8·20-s + 7.85·22-s + 8.23·23-s − 2.61·26-s − 4.47·29-s + 5·31-s + 10.8·32-s − 3.85·34-s + 4.70·37-s + 7.85·38-s − 16.7·40-s + 4.47·41-s − 8·43-s + 14.5·44-s + 21.5·46-s + 7.47·47-s − 4.85·52-s + ⋯ |
L(s) = 1 | + 1.85·2-s + 2.42·4-s − 0.999·5-s + 2.64·8-s − 1.85·10-s + 0.904·11-s − 0.277·13-s + 2.46·16-s − 0.357·17-s + 0.688·19-s − 2.42·20-s + 1.67·22-s + 1.71·23-s − 0.513·26-s − 0.830·29-s + 0.898·31-s + 1.91·32-s − 0.660·34-s + 0.774·37-s + 1.27·38-s − 2.64·40-s + 0.698·41-s − 1.21·43-s + 2.19·44-s + 3.17·46-s + 1.08·47-s − 0.673·52-s + ⋯ |
Λ(s)=(=(5733s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5733s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
6.240507242 |
L(21) |
≈ |
6.240507242 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
| 13 | 1+T |
good | 2 | 1−2.61T+2T2 |
| 5 | 1+2.23T+5T2 |
| 11 | 1−3T+11T2 |
| 17 | 1+1.47T+17T2 |
| 19 | 1−3T+19T2 |
| 23 | 1−8.23T+23T2 |
| 29 | 1+4.47T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1−4.70T+37T2 |
| 41 | 1−4.47T+41T2 |
| 43 | 1+8T+43T2 |
| 47 | 1−7.47T+47T2 |
| 53 | 1−7.47T+53T2 |
| 59 | 1−1.47T+59T2 |
| 61 | 1−3T+61T2 |
| 67 | 1+3T+67T2 |
| 71 | 1−8.94T+71T2 |
| 73 | 1+2.70T+73T2 |
| 79 | 1+2.70T+79T2 |
| 83 | 1+83T2 |
| 89 | 1+2.23T+89T2 |
| 97 | 1−9.41T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.69629757132774707611651376452, −7.17955611398549923853908406109, −6.62305805131218474681205173489, −5.81398570354841287006827766299, −5.04922240682503243801843755772, −4.40802129489538029928248668667, −3.79572697239028377233237807751, −3.16810263603139382652102846667, −2.31518502414556948623382678579, −1.05093587368298752338815604664,
1.05093587368298752338815604664, 2.31518502414556948623382678579, 3.16810263603139382652102846667, 3.79572697239028377233237807751, 4.40802129489538029928248668667, 5.04922240682503243801843755772, 5.81398570354841287006827766299, 6.62305805131218474681205173489, 7.17955611398549923853908406109, 7.69629757132774707611651376452