L(s) = 1 | + (−0.766 − 0.642i)2-s + (−0.939 + 0.342i)3-s + (0.173 + 0.984i)4-s + (0.173 − 0.984i)5-s + (0.939 + 0.342i)6-s + (0.266 + 0.460i)7-s + (0.500 − 0.866i)8-s + (0.766 − 0.642i)9-s + (−0.766 + 0.642i)10-s + (−0.326 + 0.565i)11-s + (−0.499 − 0.866i)12-s + (0.439 + 0.160i)13-s + (0.0923 − 0.524i)14-s + (0.173 + 0.984i)15-s + (−0.939 + 0.342i)16-s + (0.439 + 0.368i)17-s + ⋯ |
L(s) = 1 | + (−0.541 − 0.454i)2-s + (−0.542 + 0.197i)3-s + (0.0868 + 0.492i)4-s + (0.0776 − 0.440i)5-s + (0.383 + 0.139i)6-s + (0.100 + 0.174i)7-s + (0.176 − 0.306i)8-s + (0.255 − 0.214i)9-s + (−0.242 + 0.203i)10-s + (−0.0983 + 0.170i)11-s + (−0.144 − 0.250i)12-s + (0.121 + 0.0443i)13-s + (0.0246 − 0.140i)14-s + (0.0448 + 0.254i)15-s + (−0.234 + 0.0855i)16-s + (0.106 + 0.0894i)17-s + ⋯ |
Λ(s)=(=(570s/2ΓC(s)L(s)(0.766+0.642i)Λ(2−s)
Λ(s)=(=(570s/2ΓC(s+1/2)L(s)(0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
570
= 2⋅3⋅5⋅19
|
Sign: |
0.766+0.642i
|
Analytic conductor: |
4.55147 |
Root analytic conductor: |
2.13341 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ570(301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 570, ( :1/2), 0.766+0.642i)
|
Particular Values
L(1) |
≈ |
0.895473−0.325594i |
L(21) |
≈ |
0.895473−0.325594i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.766+0.642i)T |
| 3 | 1+(0.939−0.342i)T |
| 5 | 1+(−0.173+0.984i)T |
| 19 | 1+(−4.07−1.55i)T |
good | 7 | 1+(−0.266−0.460i)T+(−3.5+6.06i)T2 |
| 11 | 1+(0.326−0.565i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.439−0.160i)T+(9.95+8.35i)T2 |
| 17 | 1+(−0.439−0.368i)T+(2.95+16.7i)T2 |
| 23 | 1+(1.09+6.19i)T+(−21.6+7.86i)T2 |
| 29 | 1+(−4.55+3.82i)T+(5.03−28.5i)T2 |
| 31 | 1+(−4.05−7.02i)T+(−15.5+26.8i)T2 |
| 37 | 1−4.17T+37T2 |
| 41 | 1+(−9.99+3.63i)T+(31.4−26.3i)T2 |
| 43 | 1+(−0.578+3.28i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−3.75+3.15i)T+(8.16−46.2i)T2 |
| 53 | 1+(1.86+10.5i)T+(−49.8+18.1i)T2 |
| 59 | 1+(−7.07−5.93i)T+(10.2+58.1i)T2 |
| 61 | 1+(0.503+2.85i)T+(−57.3+20.8i)T2 |
| 67 | 1+(7.88−6.61i)T+(11.6−65.9i)T2 |
| 71 | 1+(1.17−6.67i)T+(−66.7−24.2i)T2 |
| 73 | 1+(0.247−0.0901i)T+(55.9−46.9i)T2 |
| 79 | 1+(−2.49+0.907i)T+(60.5−50.7i)T2 |
| 83 | 1+(1.78+3.09i)T+(−41.5+71.8i)T2 |
| 89 | 1+(3.72+1.35i)T+(68.1+57.2i)T2 |
| 97 | 1+(−2.89−2.42i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45295301125221404741013592098, −9.982834848975447946778750520534, −8.935168859175879057901491503070, −8.211436989972164418038831277958, −7.12545996505014054088659282945, −6.04709470795218191285457429648, −4.98587695659416134640466701268, −3.96266798603349577457080102312, −2.49273022674091842537828904015, −0.917200015963794142517730741304,
1.10957861463478056120659007418, 2.82587386145345647755846696205, 4.41084535118673877238889793271, 5.61723640639435822383588298476, 6.29461541071027269162351551178, 7.40487314964740248254239244468, 7.86733640996083451275907047053, 9.216793340351153519781004410842, 9.873317691904223564671856762654, 10.88616895869109935654937625539