L(s) = 1 | + (−0.766 − 0.642i)2-s + (−0.939 + 0.342i)3-s + (0.173 + 0.984i)4-s + (0.173 − 0.984i)5-s + (0.939 + 0.342i)6-s + (0.266 + 0.460i)7-s + (0.500 − 0.866i)8-s + (0.766 − 0.642i)9-s + (−0.766 + 0.642i)10-s + (−0.326 + 0.565i)11-s + (−0.499 − 0.866i)12-s + (0.439 + 0.160i)13-s + (0.0923 − 0.524i)14-s + (0.173 + 0.984i)15-s + (−0.939 + 0.342i)16-s + (0.439 + 0.368i)17-s + ⋯ |
L(s) = 1 | + (−0.541 − 0.454i)2-s + (−0.542 + 0.197i)3-s + (0.0868 + 0.492i)4-s + (0.0776 − 0.440i)5-s + (0.383 + 0.139i)6-s + (0.100 + 0.174i)7-s + (0.176 − 0.306i)8-s + (0.255 − 0.214i)9-s + (−0.242 + 0.203i)10-s + (−0.0983 + 0.170i)11-s + (−0.144 − 0.250i)12-s + (0.121 + 0.0443i)13-s + (0.0246 − 0.140i)14-s + (0.0448 + 0.254i)15-s + (−0.234 + 0.0855i)16-s + (0.106 + 0.0894i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.895473 - 0.325594i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.895473 - 0.325594i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 + 0.642i)T \) |
| 3 | \( 1 + (0.939 - 0.342i)T \) |
| 5 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (-4.07 - 1.55i)T \) |
good | 7 | \( 1 + (-0.266 - 0.460i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.326 - 0.565i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.439 - 0.160i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.439 - 0.368i)T + (2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (1.09 + 6.19i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-4.55 + 3.82i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-4.05 - 7.02i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.17T + 37T^{2} \) |
| 41 | \( 1 + (-9.99 + 3.63i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.578 + 3.28i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-3.75 + 3.15i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (1.86 + 10.5i)T + (-49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-7.07 - 5.93i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (0.503 + 2.85i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (7.88 - 6.61i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (1.17 - 6.67i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (0.247 - 0.0901i)T + (55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (-2.49 + 0.907i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (1.78 + 3.09i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (3.72 + 1.35i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-2.89 - 2.42i)T + (16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45295301125221404741013592098, −9.982834848975447946778750520534, −8.935168859175879057901491503070, −8.211436989972164418038831277958, −7.12545996505014054088659282945, −6.04709470795218191285457429648, −4.98587695659416134640466701268, −3.96266798603349577457080102312, −2.49273022674091842537828904015, −0.917200015963794142517730741304,
1.10957861463478056120659007418, 2.82587386145345647755846696205, 4.41084535118673877238889793271, 5.61723640639435822383588298476, 6.29461541071027269162351551178, 7.40487314964740248254239244468, 7.86733640996083451275907047053, 9.216793340351153519781004410842, 9.873317691904223564671856762654, 10.88616895869109935654937625539