Properties

Label 2-570-1.1-c3-0-16
Degree $2$
Conductor $570$
Sign $-1$
Analytic cond. $33.6310$
Root an. cond. $5.79923$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3·3-s + 4·4-s − 5·5-s + 6·6-s − 20.0·7-s − 8·8-s + 9·9-s + 10·10-s − 16.6·11-s − 12·12-s + 56.7·13-s + 40.0·14-s + 15·15-s + 16·16-s + 109.·17-s − 18·18-s + 19·19-s − 20·20-s + 60.1·21-s + 33.3·22-s − 44.6·23-s + 24·24-s + 25·25-s − 113.·26-s − 27·27-s − 80.1·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.447·5-s + 0.408·6-s − 1.08·7-s − 0.353·8-s + 0.333·9-s + 0.316·10-s − 0.456·11-s − 0.288·12-s + 1.21·13-s + 0.765·14-s + 0.258·15-s + 0.250·16-s + 1.56·17-s − 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.624·21-s + 0.322·22-s − 0.405·23-s + 0.204·24-s + 0.200·25-s − 0.856·26-s − 0.192·27-s − 0.541·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 570 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(570\)    =    \(2 \cdot 3 \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(33.6310\)
Root analytic conductor: \(5.79923\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 570,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 + 3T \)
5 \( 1 + 5T \)
19 \( 1 - 19T \)
good7 \( 1 + 20.0T + 343T^{2} \)
11 \( 1 + 16.6T + 1.33e3T^{2} \)
13 \( 1 - 56.7T + 2.19e3T^{2} \)
17 \( 1 - 109.T + 4.91e3T^{2} \)
23 \( 1 + 44.6T + 1.21e4T^{2} \)
29 \( 1 + 181.T + 2.43e4T^{2} \)
31 \( 1 + 64.8T + 2.97e4T^{2} \)
37 \( 1 - 243.T + 5.06e4T^{2} \)
41 \( 1 - 248.T + 6.89e4T^{2} \)
43 \( 1 - 162.T + 7.95e4T^{2} \)
47 \( 1 + 0.878T + 1.03e5T^{2} \)
53 \( 1 - 119.T + 1.48e5T^{2} \)
59 \( 1 + 863.T + 2.05e5T^{2} \)
61 \( 1 + 131.T + 2.26e5T^{2} \)
67 \( 1 + 306.T + 3.00e5T^{2} \)
71 \( 1 + 312.T + 3.57e5T^{2} \)
73 \( 1 - 661.T + 3.89e5T^{2} \)
79 \( 1 - 6.12T + 4.93e5T^{2} \)
83 \( 1 + 992.T + 5.71e5T^{2} \)
89 \( 1 + 1.26e3T + 7.04e5T^{2} \)
97 \( 1 + 1.30e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.871982365083530925021238674552, −9.193323999280936699257954786268, −8.002853753850172375728771397464, −7.34965948261003075090525560503, −6.19552686049794967455417080994, −5.61816174379104197710632048654, −3.96157533766119271749753722639, −3.00453949805353343623814577561, −1.21311560557006009794009683142, 0, 1.21311560557006009794009683142, 3.00453949805353343623814577561, 3.96157533766119271749753722639, 5.61816174379104197710632048654, 6.19552686049794967455417080994, 7.34965948261003075090525560503, 8.002853753850172375728771397464, 9.193323999280936699257954786268, 9.871982365083530925021238674552

Graph of the $Z$-function along the critical line