Properties

Label 2-567-189.47-c1-0-8
Degree $2$
Conductor $567$
Sign $0.986 + 0.166i$
Analytic cond. $4.52751$
Root an. cond. $2.12779$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.245 − 0.0432i)2-s + (−1.82 − 0.662i)4-s + (−1.99 − 0.727i)5-s + (0.302 + 2.62i)7-s + (0.848 + 0.489i)8-s + (0.458 + 0.264i)10-s + (0.489 + 1.34i)11-s + (1.30 − 3.59i)13-s + (0.0394 − 0.657i)14-s + (2.78 + 2.33i)16-s + (−0.109 + 0.188i)17-s + (2.56 − 1.48i)19-s + (3.15 + 2.64i)20-s + (−0.0618 − 0.350i)22-s + (7.61 − 1.34i)23-s + ⋯
L(s)  = 1  + (−0.173 − 0.0305i)2-s + (−0.910 − 0.331i)4-s + (−0.893 − 0.325i)5-s + (0.114 + 0.993i)7-s + (0.300 + 0.173i)8-s + (0.144 + 0.0836i)10-s + (0.147 + 0.405i)11-s + (0.362 − 0.996i)13-s + (0.0105 − 0.175i)14-s + (0.695 + 0.583i)16-s + (−0.0264 + 0.0458i)17-s + (0.589 − 0.340i)19-s + (0.706 + 0.592i)20-s + (−0.0131 − 0.0747i)22-s + (1.58 − 0.279i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.986 + 0.166i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.986 + 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $0.986 + 0.166i$
Analytic conductor: \(4.52751\)
Root analytic conductor: \(2.12779\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{567} (467, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 567,\ (\ :1/2),\ 0.986 + 0.166i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.928833 - 0.0777746i\)
\(L(\frac12)\) \(\approx\) \(0.928833 - 0.0777746i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (-0.302 - 2.62i)T \)
good2 \( 1 + (0.245 + 0.0432i)T + (1.87 + 0.684i)T^{2} \)
5 \( 1 + (1.99 + 0.727i)T + (3.83 + 3.21i)T^{2} \)
11 \( 1 + (-0.489 - 1.34i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (-1.30 + 3.59i)T + (-9.95 - 8.35i)T^{2} \)
17 \( 1 + (0.109 - 0.188i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.56 + 1.48i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-7.61 + 1.34i)T + (21.6 - 7.86i)T^{2} \)
29 \( 1 + (-1.78 - 4.90i)T + (-22.2 + 18.6i)T^{2} \)
31 \( 1 + (-1.32 + 3.64i)T + (-23.7 - 19.9i)T^{2} \)
37 \( 1 - 6.01T + 37T^{2} \)
41 \( 1 + (-10.0 - 3.66i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-1.29 + 7.34i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (-5.51 + 2.00i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 + (12.1 - 6.98i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.21 + 1.01i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-1.45 - 3.99i)T + (-46.7 + 39.2i)T^{2} \)
67 \( 1 + (-2.59 - 14.6i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (-4.29 + 2.47i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 - 2.46iT - 73T^{2} \)
79 \( 1 + (0.675 - 3.83i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (-0.141 + 0.0515i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (3.40 + 5.89i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-12.2 - 2.16i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75722116642655275083415386795, −9.643861073081239999284218481017, −8.920919815986273985544348691795, −8.263289936005146293221021858727, −7.39633765579042512228490608211, −5.91870202432132486304781188586, −5.07548684956124294464957713703, −4.20858372776923001713699343250, −2.88376508974279906581282960713, −0.908709024676711738064963953329, 0.926525440078497777496477245194, 3.27988260168866328604114831341, 4.05404909443438421619997242983, 4.86182758766691744262923992313, 6.40650058792200358005130598346, 7.48257936196678968553167925506, 7.948639289230419239892213259069, 9.058173095394542983315550123630, 9.722603695810839294365955024427, 10.96234716242085435756803277364

Graph of the $Z$-function along the critical line