Properties

Label 2-567-1.1-c3-0-71
Degree $2$
Conductor $567$
Sign $1$
Analytic cond. $33.4540$
Root an. cond. $5.78395$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 7·4-s − 14·5-s − 7·7-s + 15·8-s + 14·10-s − 47·11-s − 86·13-s + 7·14-s + 41·16-s − 9·17-s − 131·19-s + 98·20-s + 47·22-s − 12·23-s + 71·25-s + 86·26-s + 49·28-s − 260·29-s − 54·31-s − 161·32-s + 9·34-s + 98·35-s − 246·37-s + 131·38-s − 210·40-s + 383·41-s + ⋯
L(s)  = 1  − 0.353·2-s − 7/8·4-s − 1.25·5-s − 0.377·7-s + 0.662·8-s + 0.442·10-s − 1.28·11-s − 1.83·13-s + 0.133·14-s + 0.640·16-s − 0.128·17-s − 1.58·19-s + 1.09·20-s + 0.455·22-s − 0.108·23-s + 0.567·25-s + 0.648·26-s + 0.330·28-s − 1.66·29-s − 0.312·31-s − 0.889·32-s + 0.0453·34-s + 0.473·35-s − 1.09·37-s + 0.559·38-s − 0.830·40-s + 1.45·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(567\)    =    \(3^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(33.4540\)
Root analytic conductor: \(5.78395\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 567,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 + T + p^{3} T^{2} \)
5 \( 1 + 14 T + p^{3} T^{2} \)
11 \( 1 + 47 T + p^{3} T^{2} \)
13 \( 1 + 86 T + p^{3} T^{2} \)
17 \( 1 + 9 T + p^{3} T^{2} \)
19 \( 1 + 131 T + p^{3} T^{2} \)
23 \( 1 + 12 T + p^{3} T^{2} \)
29 \( 1 + 260 T + p^{3} T^{2} \)
31 \( 1 + 54 T + p^{3} T^{2} \)
37 \( 1 + 246 T + p^{3} T^{2} \)
41 \( 1 - 383 T + p^{3} T^{2} \)
43 \( 1 + 169 T + p^{3} T^{2} \)
47 \( 1 - 96 T + p^{3} T^{2} \)
53 \( 1 - 300 T + p^{3} T^{2} \)
59 \( 1 - 429 T + p^{3} T^{2} \)
61 \( 1 + 380 T + p^{3} T^{2} \)
67 \( 1 + 155 T + p^{3} T^{2} \)
71 \( 1 - 72 T + p^{3} T^{2} \)
73 \( 1 - 117 T + p^{3} T^{2} \)
79 \( 1 + 526 T + p^{3} T^{2} \)
83 \( 1 - 576 T + p^{3} T^{2} \)
89 \( 1 + 278 T + p^{3} T^{2} \)
97 \( 1 + 201 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.442743830681247730759628175689, −8.502598045886930119835416055184, −7.71590223777863959295182677546, −7.17233186974220298853115080178, −5.50561701561228407187882647115, −4.60684721590440854948650657165, −3.77207709307496969488493918383, −2.36755685101964811805412793216, 0, 0, 2.36755685101964811805412793216, 3.77207709307496969488493918383, 4.60684721590440854948650657165, 5.50561701561228407187882647115, 7.17233186974220298853115080178, 7.71590223777863959295182677546, 8.502598045886930119835416055184, 9.442743830681247730759628175689

Graph of the $Z$-function along the critical line