L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s + 2·7-s − 8-s + 9-s − 10-s − 11-s + 12-s − 4·13-s − 2·14-s + 15-s + 16-s + 17-s − 18-s + 8·19-s + 20-s + 2·21-s + 22-s − 24-s + 25-s + 4·26-s + 27-s + 2·28-s + 6·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s − 1.10·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 1.83·19-s + 0.223·20-s + 0.436·21-s + 0.213·22-s − 0.204·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.377·28-s + 1.11·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.219726501\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.219726501\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 17 | \( 1 - T \) |
good | 7 | \( 1 - 2 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 10 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 6 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 - 8 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 - 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.014577732573335157216093461931, −7.72353265260683119088373234049, −6.93246209178277148027600484537, −6.15247408446868593637176285741, −5.04880624267662423450314672098, −4.76995000226718477111472880364, −3.31819312970869046252227802193, −2.70729266496666967945316346561, −1.81334445828822228623030230293, −0.894276120626598724062637586377,
0.894276120626598724062637586377, 1.81334445828822228623030230293, 2.70729266496666967945316346561, 3.31819312970869046252227802193, 4.76995000226718477111472880364, 5.04880624267662423450314672098, 6.15247408446868593637176285741, 6.93246209178277148027600484537, 7.72353265260683119088373234049, 8.014577732573335157216093461931