L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s + 2·7-s − 8-s + 9-s − 10-s − 11-s + 12-s − 4·13-s − 2·14-s + 15-s + 16-s + 17-s − 18-s + 8·19-s + 20-s + 2·21-s + 22-s − 24-s + 25-s + 4·26-s + 27-s + 2·28-s + 6·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s − 1.10·13-s − 0.534·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 1.83·19-s + 0.223·20-s + 0.436·21-s + 0.213·22-s − 0.204·24-s + 1/5·25-s + 0.784·26-s + 0.192·27-s + 0.377·28-s + 1.11·29-s + ⋯ |
Λ(s)=(=(5610s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5610s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.219726501 |
L(21) |
≈ |
2.219726501 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 5 | 1−T |
| 11 | 1+T |
| 17 | 1−T |
good | 7 | 1−2T+pT2 |
| 13 | 1+4T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+10T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1−8T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.014577732573335157216093461931, −7.72353265260683119088373234049, −6.93246209178277148027600484537, −6.15247408446868593637176285741, −5.04880624267662423450314672098, −4.76995000226718477111472880364, −3.31819312970869046252227802193, −2.70729266496666967945316346561, −1.81334445828822228623030230293, −0.894276120626598724062637586377,
0.894276120626598724062637586377, 1.81334445828822228623030230293, 2.70729266496666967945316346561, 3.31819312970869046252227802193, 4.76995000226718477111472880364, 5.04880624267662423450314672098, 6.15247408446868593637176285741, 6.93246209178277148027600484537, 7.72353265260683119088373234049, 8.014577732573335157216093461931