L(s) = 1 | + (−1 + 1.73i)3-s + (−2.5 − 4.33i)5-s + (14 + 12.1i)7-s + (11.5 + 19.9i)9-s + (−22.5 + 38.9i)11-s + 59·13-s + 10·15-s + (27 − 46.7i)17-s + (−60.5 − 104. i)19-s + (−35 + 12.1i)21-s + (34.5 + 59.7i)23-s + (−12.5 + 21.6i)25-s − 100·27-s − 162·29-s + (−44 + 76.2i)31-s + ⋯ |
L(s) = 1 | + (−0.192 + 0.333i)3-s + (−0.223 − 0.387i)5-s + (0.755 + 0.654i)7-s + (0.425 + 0.737i)9-s + (−0.616 + 1.06i)11-s + 1.25·13-s + 0.172·15-s + (0.385 − 0.667i)17-s + (−0.730 − 1.26i)19-s + (−0.363 + 0.125i)21-s + (0.312 + 0.541i)23-s + (−0.100 + 0.173i)25-s − 0.712·27-s − 1.03·29-s + (−0.254 + 0.441i)31-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)(−0.266−0.963i)Λ(4−s)
Λ(s)=(=(560s/2ΓC(s+3/2)L(s)(−0.266−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
560
= 24⋅5⋅7
|
Sign: |
−0.266−0.963i
|
Analytic conductor: |
33.0410 |
Root analytic conductor: |
5.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ560(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 560, ( :3/2), −0.266−0.963i)
|
Particular Values
L(2) |
≈ |
1.666166635 |
L(21) |
≈ |
1.666166635 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(2.5+4.33i)T |
| 7 | 1+(−14−12.1i)T |
good | 3 | 1+(1−1.73i)T+(−13.5−23.3i)T2 |
| 11 | 1+(22.5−38.9i)T+(−665.5−1.15e3i)T2 |
| 13 | 1−59T+2.19e3T2 |
| 17 | 1+(−27+46.7i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(60.5+104.i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−34.5−59.7i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+162T+2.43e4T2 |
| 31 | 1+(44−76.2i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(−129.5−224.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−195T+6.89e4T2 |
| 43 | 1−286T+7.95e4T2 |
| 47 | 1+(−22.5−38.9i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(298.5−517.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(180−311.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(196+339.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(140−242.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+48T+3.57e5T2 |
| 73 | 1+(334−578.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(−391−677.i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1+768T+5.71e5T2 |
| 89 | 1+(−597−1.03e3i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1−902T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.91796874532800871770764223549, −9.654501098455661572097993301956, −8.910069059219240319585256136259, −7.927833583667584658875731710814, −7.22540348026008709696611574359, −5.77707550062993724905007182985, −4.92662207633951749705784223142, −4.27556526153179904551614671538, −2.60924418659676248201970716497, −1.39978659894588040544829320853,
0.54509718477450021843362418057, 1.71456253059332330903925781118, 3.48954687785082697490935015396, 4.13175858058002997581577793331, 5.76647327660066276511160302097, 6.30667999154460271280950449961, 7.56875381283536026398297967529, 8.118153379539610668149114124838, 9.114871375564382126972698385374, 10.48363156053982916687705063038