L(s) = 1 | + (−1 + 1.73i)3-s + (−2.5 − 4.33i)5-s + (14 + 12.1i)7-s + (11.5 + 19.9i)9-s + (−22.5 + 38.9i)11-s + 59·13-s + 10·15-s + (27 − 46.7i)17-s + (−60.5 − 104. i)19-s + (−35 + 12.1i)21-s + (34.5 + 59.7i)23-s + (−12.5 + 21.6i)25-s − 100·27-s − 162·29-s + (−44 + 76.2i)31-s + ⋯ |
L(s) = 1 | + (−0.192 + 0.333i)3-s + (−0.223 − 0.387i)5-s + (0.755 + 0.654i)7-s + (0.425 + 0.737i)9-s + (−0.616 + 1.06i)11-s + 1.25·13-s + 0.172·15-s + (0.385 − 0.667i)17-s + (−0.730 − 1.26i)19-s + (−0.363 + 0.125i)21-s + (0.312 + 0.541i)23-s + (−0.100 + 0.173i)25-s − 0.712·27-s − 1.03·29-s + (−0.254 + 0.441i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.666166635\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.666166635\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.5 + 4.33i)T \) |
| 7 | \( 1 + (-14 - 12.1i)T \) |
good | 3 | \( 1 + (1 - 1.73i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (22.5 - 38.9i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 59T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-27 + 46.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (60.5 + 104. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-34.5 - 59.7i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 162T + 2.43e4T^{2} \) |
| 31 | \( 1 + (44 - 76.2i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-129.5 - 224. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 195T + 6.89e4T^{2} \) |
| 43 | \( 1 - 286T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-22.5 - 38.9i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (298.5 - 517. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (180 - 311. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (196 + 339. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (140 - 242. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 48T + 3.57e5T^{2} \) |
| 73 | \( 1 + (334 - 578. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-391 - 677. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 768T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-597 - 1.03e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 902T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91796874532800871770764223549, −9.654501098455661572097993301956, −8.910069059219240319585256136259, −7.927833583667584658875731710814, −7.22540348026008709696611574359, −5.77707550062993724905007182985, −4.92662207633951749705784223142, −4.27556526153179904551614671538, −2.60924418659676248201970716497, −1.39978659894588040544829320853,
0.54509718477450021843362418057, 1.71456253059332330903925781118, 3.48954687785082697490935015396, 4.13175858058002997581577793331, 5.76647327660066276511160302097, 6.30667999154460271280950449961, 7.56875381283536026398297967529, 8.118153379539610668149114124838, 9.114871375564382126972698385374, 10.48363156053982916687705063038