| L(s) = 1 | + (0.5 + 0.866i)3-s + (0.5 − 0.866i)5-s + (0.5 − 2.59i)7-s + (1 − 1.73i)9-s + (−3 − 5.19i)11-s − 4·13-s + 0.999·15-s + (1 − 1.73i)19-s + (2.5 − 0.866i)21-s + (−1.5 + 2.59i)23-s + (−0.499 − 0.866i)25-s + 5·27-s − 3·29-s + (4 + 6.92i)31-s + (3 − 5.19i)33-s + ⋯ |
| L(s) = 1 | + (0.288 + 0.499i)3-s + (0.223 − 0.387i)5-s + (0.188 − 0.981i)7-s + (0.333 − 0.577i)9-s + (−0.904 − 1.56i)11-s − 1.10·13-s + 0.258·15-s + (0.229 − 0.397i)19-s + (0.545 − 0.188i)21-s + (−0.312 + 0.541i)23-s + (−0.0999 − 0.173i)25-s + 0.962·27-s − 0.557·29-s + (0.718 + 1.24i)31-s + (0.522 − 0.904i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.21848 - 0.810515i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.21848 - 0.810515i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
| good | 3 | \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (3 + 5.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3T + 29T^{2} \) |
| 31 | \( 1 + (-4 - 6.92i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9T + 41T^{2} \) |
| 43 | \( 1 - 7T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 - 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (-8 - 13.8i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1 + 1.73i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 14T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52610291090482988796514097006, −9.737916287566358540414165534832, −8.954531385528270619857509295449, −7.958895390944305290544764811325, −7.13977471800601991289190397013, −5.88088910561294881195022216836, −4.88254824613117505382671804894, −3.88345065625122588213397001023, −2.80063679728376044789761690869, −0.811805894555582142530315413422,
2.13931140405510732205263691279, 2.51464033325386093398727874030, 4.49408495836826359745648464830, 5.30905693630335057621821325933, 6.49011580126593528066955492493, 7.66773938004256374424419296030, 7.84031517987816893486907137675, 9.345121989817046898139113135481, 9.950990715049745388256337962014, 10.82465588357168608819917333454