L(s) = 1 | + (0.491 + 0.491i)3-s + (4.95 + 0.646i)5-s + (6.17 + 3.29i)7-s − 8.51i·9-s − 15.9i·11-s + (9.60 − 9.60i)13-s + (2.11 + 2.75i)15-s + (−21.9 − 21.9i)17-s + 2.96i·19-s + (1.41 + 4.65i)21-s + (−22.9 + 22.9i)23-s + (24.1 + 6.41i)25-s + (8.60 − 8.60i)27-s + 2.31i·29-s + 49.4·31-s + ⋯ |
L(s) = 1 | + (0.163 + 0.163i)3-s + (0.991 + 0.129i)5-s + (0.882 + 0.470i)7-s − 0.946i·9-s − 1.45i·11-s + (0.739 − 0.739i)13-s + (0.141 + 0.183i)15-s + (−1.29 − 1.29i)17-s + 0.155i·19-s + (0.0674 + 0.221i)21-s + (−0.997 + 0.997i)23-s + (0.966 + 0.256i)25-s + (0.318 − 0.318i)27-s + 0.0798i·29-s + 1.59·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.796 + 0.604i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.796 + 0.604i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.418604562\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.418604562\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-4.95 - 0.646i)T \) |
| 7 | \( 1 + (-6.17 - 3.29i)T \) |
good | 3 | \( 1 + (-0.491 - 0.491i)T + 9iT^{2} \) |
| 11 | \( 1 + 15.9iT - 121T^{2} \) |
| 13 | \( 1 + (-9.60 + 9.60i)T - 169iT^{2} \) |
| 17 | \( 1 + (21.9 + 21.9i)T + 289iT^{2} \) |
| 19 | \( 1 - 2.96iT - 361T^{2} \) |
| 23 | \( 1 + (22.9 - 22.9i)T - 529iT^{2} \) |
| 29 | \( 1 - 2.31iT - 841T^{2} \) |
| 31 | \( 1 - 49.4T + 961T^{2} \) |
| 37 | \( 1 + (9.99 - 9.99i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 58.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (29.2 - 29.2i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (19.1 - 19.1i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-22.0 - 22.0i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 19.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 88.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (-20.9 - 20.9i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 80.0iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-28.2 + 28.2i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 57.9T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-70.9 - 70.9i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 44.5T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-72.3 - 72.3i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48884508568291031138125919870, −9.449604769028856209507597242241, −8.788251390881316702328561563249, −8.054026562001868476450080614567, −6.57424313572562953758657055096, −5.89859140037757363879132227754, −5.01090603421011498706028637896, −3.55234205883986526269851799886, −2.48394511535516566762217784478, −0.972400901754998280726070327524,
1.69746237375180560310658580890, 2.18199132655029799372623460193, 4.32199303339871095985429894763, 4.80009602282748330131099757432, 6.21374734388524389070094272520, 6.95189819311753873758823974988, 8.162595696423663108377536508195, 8.704053959006290482687903040246, 9.994200032700653619272685680068, 10.48343508071549263975422043452