L(s) = 1 | + (−2.71 + 2.71i)3-s + (−4.98 − 0.435i)5-s + (4.64 − 5.23i)7-s − 5.72i·9-s − 8.05i·11-s + (12.1 + 12.1i)13-s + (14.6 − 12.3i)15-s + (4.68 − 4.68i)17-s + 3.49i·19-s + (1.62 + 26.8i)21-s + (−4.14 − 4.14i)23-s + (24.6 + 4.33i)25-s + (−8.87 − 8.87i)27-s + 42.7i·29-s − 7.32·31-s + ⋯ |
L(s) = 1 | + (−0.904 + 0.904i)3-s + (−0.996 − 0.0870i)5-s + (0.663 − 0.748i)7-s − 0.636i·9-s − 0.732i·11-s + (0.932 + 0.932i)13-s + (0.979 − 0.822i)15-s + (0.275 − 0.275i)17-s + 0.183i·19-s + (0.0772 + 1.27i)21-s + (−0.180 − 0.180i)23-s + (0.984 + 0.173i)25-s + (−0.328 − 0.328i)27-s + 1.47i·29-s − 0.236·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.261 - 0.965i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.261 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.8782073217\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8782073217\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (4.98 + 0.435i)T \) |
| 7 | \( 1 + (-4.64 + 5.23i)T \) |
good | 3 | \( 1 + (2.71 - 2.71i)T - 9iT^{2} \) |
| 11 | \( 1 + 8.05iT - 121T^{2} \) |
| 13 | \( 1 + (-12.1 - 12.1i)T + 169iT^{2} \) |
| 17 | \( 1 + (-4.68 + 4.68i)T - 289iT^{2} \) |
| 19 | \( 1 - 3.49iT - 361T^{2} \) |
| 23 | \( 1 + (4.14 + 4.14i)T + 529iT^{2} \) |
| 29 | \( 1 - 42.7iT - 841T^{2} \) |
| 31 | \( 1 + 7.32T + 961T^{2} \) |
| 37 | \( 1 + (10.4 + 10.4i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 51.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (-37.8 - 37.8i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (49.4 + 49.4i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (49.7 - 49.7i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 74.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 43.1iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (57.2 - 57.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 45.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-53.0 - 53.0i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 96.4T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-52.7 + 52.7i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 31.9T + 7.92e3T^{2} \) |
| 97 | \( 1 + (19.5 - 19.5i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.04844421193103497444581353105, −10.25557177133426510279285846241, −9.039859294217653039483943660925, −8.201083538101982979227416054815, −7.22983490398425141101556334677, −6.13605034069456025514167201398, −5.00332546749389037231392882865, −4.27532687708381634662179029535, −3.46421611556772012959942451418, −1.11570836292397495739839620230,
0.46911352712855025639205301351, 1.87769033476848256242305980217, 3.50884238482469334551845873110, 4.82678842648185241881857342151, 5.78216800238798050705087044361, 6.61963175953304782282264502517, 7.73885204604312820442337128338, 8.126134652670269869768832461636, 9.350497492615759613368205297885, 10.74451089504678550428722619550