L(s) = 1 | + (3.74 − 3.74i)3-s + (−3.76 + 3.29i)5-s + (−6.99 + 0.0261i)7-s − 19.0i·9-s − 5.33i·11-s + (−13.8 − 13.8i)13-s + (−1.77 + 26.4i)15-s + (−12.8 + 12.8i)17-s + 25.2i·19-s + (−26.1 + 26.3i)21-s + (12.2 + 12.2i)23-s + (3.34 − 24.7i)25-s + (−37.6 − 37.6i)27-s + 13.3i·29-s − 46.4·31-s + ⋯ |
L(s) = 1 | + (1.24 − 1.24i)3-s + (−0.752 + 0.658i)5-s + (−0.999 + 0.00372i)7-s − 2.11i·9-s − 0.485i·11-s + (−1.06 − 1.06i)13-s + (−0.118 + 1.76i)15-s + (−0.758 + 0.758i)17-s + 1.33i·19-s + (−1.24 + 1.25i)21-s + (0.534 + 0.534i)23-s + (0.133 − 0.990i)25-s + (−1.39 − 1.39i)27-s + 0.460i·29-s − 1.49·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 - 0.290i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6332936424\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6332936424\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (3.76 - 3.29i)T \) |
| 7 | \( 1 + (6.99 - 0.0261i)T \) |
good | 3 | \( 1 + (-3.74 + 3.74i)T - 9iT^{2} \) |
| 11 | \( 1 + 5.33iT - 121T^{2} \) |
| 13 | \( 1 + (13.8 + 13.8i)T + 169iT^{2} \) |
| 17 | \( 1 + (12.8 - 12.8i)T - 289iT^{2} \) |
| 19 | \( 1 - 25.2iT - 361T^{2} \) |
| 23 | \( 1 + (-12.2 - 12.2i)T + 529iT^{2} \) |
| 29 | \( 1 - 13.3iT - 841T^{2} \) |
| 31 | \( 1 + 46.4T + 961T^{2} \) |
| 37 | \( 1 + (-6.06 - 6.06i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 80.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (40.6 + 40.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (19.3 + 19.3i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (34.8 - 34.8i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 58.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 14.4iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (36.9 - 36.9i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 24.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (30.9 + 30.9i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 135.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (22.0 - 22.0i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 12.2T + 7.92e3T^{2} \) |
| 97 | \( 1 + (46.1 - 46.1i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.998587703176086300843450847465, −8.932134268485428065262101268724, −8.162726602282160277250154819291, −7.37566649738653288434315394884, −6.83661783804041940042907351957, −5.74705982579969470047924555762, −3.65393931871801778940612082248, −3.19496147753128309788008413525, −2.03436467496198968388913204194, −0.19010018112644058332572934433,
2.41545006600830128510172882337, 3.34341764261779884811035565157, 4.57516890750452038611441970540, 4.75379042455656461824527070547, 6.78560443997845669245875422437, 7.61173335029643402526079960482, 8.742567777224536464760954849854, 9.414369511697992175367812673233, 9.625090578547423064810938210848, 10.92959500731629602506016262895