L(s) = 1 | + (1.09 − 1.09i)3-s + (0.913 − 4.91i)5-s + (6.93 − 0.925i)7-s + 6.59i·9-s + 4.54i·11-s + (14.2 + 14.2i)13-s + (−4.38 − 6.38i)15-s + (13.7 − 13.7i)17-s + 3.69i·19-s + (6.58 − 8.61i)21-s + (25.9 + 25.9i)23-s + (−23.3 − 8.97i)25-s + (17.0 + 17.0i)27-s − 42.9i·29-s − 10.8·31-s + ⋯ |
L(s) = 1 | + (0.365 − 0.365i)3-s + (0.182 − 0.983i)5-s + (0.991 − 0.132i)7-s + 0.733i·9-s + 0.413i·11-s + (1.09 + 1.09i)13-s + (−0.292 − 0.425i)15-s + (0.807 − 0.807i)17-s + 0.194i·19-s + (0.313 − 0.410i)21-s + (1.12 + 1.12i)23-s + (−0.933 − 0.359i)25-s + (0.633 + 0.633i)27-s − 1.48i·29-s − 0.350·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.855 + 0.518i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.855 + 0.518i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.508269962\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.508269962\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.913 + 4.91i)T \) |
| 7 | \( 1 + (-6.93 + 0.925i)T \) |
good | 3 | \( 1 + (-1.09 + 1.09i)T - 9iT^{2} \) |
| 11 | \( 1 - 4.54iT - 121T^{2} \) |
| 13 | \( 1 + (-14.2 - 14.2i)T + 169iT^{2} \) |
| 17 | \( 1 + (-13.7 + 13.7i)T - 289iT^{2} \) |
| 19 | \( 1 - 3.69iT - 361T^{2} \) |
| 23 | \( 1 + (-25.9 - 25.9i)T + 529iT^{2} \) |
| 29 | \( 1 + 42.9iT - 841T^{2} \) |
| 31 | \( 1 + 10.8T + 961T^{2} \) |
| 37 | \( 1 + (36.7 + 36.7i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 30.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (47.4 + 47.4i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-39.0 - 39.0i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (17.0 - 17.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 93.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 51.6iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (-54.9 + 54.9i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 50.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (1.87 + 1.87i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 103.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-51.9 + 51.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 67.4T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-25.1 + 25.1i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53734949200678517070660820425, −9.329094721699616819998871520741, −8.734934701543872684884176073231, −7.82272523260261654897695740971, −7.17046259976540057334585944159, −5.64346982819084001359145379366, −4.91360398384257511158999865882, −3.87298418245782904646675336590, −2.08453900079836165787191905616, −1.24528871663748861628954873045,
1.27551771708140888528822279426, 2.99639711325951354472091446758, 3.60786512940924309381216173779, 5.07233947184405394440621888434, 6.08877395548555350331114504641, 6.97109447954878435452726829184, 8.261958558329170291505213218192, 8.634034620768137604751387051817, 9.918292458355690863943093621137, 10.70121228512861422837371653312