L(s) = 1 | + (−2.33 + 2.33i)3-s + (−4.70 + 1.70i)5-s + (−6.43 − 2.74i)7-s − 1.92i·9-s − 11.8i·11-s + (−0.694 − 0.694i)13-s + (7.01 − 14.9i)15-s + (−16.8 + 16.8i)17-s − 10.7i·19-s + (21.4 − 8.62i)21-s + (6.37 + 6.37i)23-s + (19.2 − 16.0i)25-s + (−16.5 − 16.5i)27-s + 1.46i·29-s + 32.9·31-s + ⋯ |
L(s) = 1 | + (−0.779 + 0.779i)3-s + (−0.940 + 0.340i)5-s + (−0.919 − 0.392i)7-s − 0.214i·9-s − 1.07i·11-s + (−0.0533 − 0.0533i)13-s + (0.467 − 0.997i)15-s + (−0.990 + 0.990i)17-s − 0.564i·19-s + (1.02 − 0.410i)21-s + (0.277 + 0.277i)23-s + (0.768 − 0.640i)25-s + (−0.612 − 0.612i)27-s + 0.0506i·29-s + 1.06·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0260i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0260i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6438749186\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6438749186\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (4.70 - 1.70i)T \) |
| 7 | \( 1 + (6.43 + 2.74i)T \) |
good | 3 | \( 1 + (2.33 - 2.33i)T - 9iT^{2} \) |
| 11 | \( 1 + 11.8iT - 121T^{2} \) |
| 13 | \( 1 + (0.694 + 0.694i)T + 169iT^{2} \) |
| 17 | \( 1 + (16.8 - 16.8i)T - 289iT^{2} \) |
| 19 | \( 1 + 10.7iT - 361T^{2} \) |
| 23 | \( 1 + (-6.37 - 6.37i)T + 529iT^{2} \) |
| 29 | \( 1 - 1.46iT - 841T^{2} \) |
| 31 | \( 1 - 32.9T + 961T^{2} \) |
| 37 | \( 1 + (-47.6 - 47.6i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 33.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (43.6 + 43.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-34.1 - 34.1i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-56.5 + 56.5i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 22.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 68.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (67.8 - 67.8i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 71.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-10.2 - 10.2i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 61.2T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-80.3 + 80.3i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 27.7T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-4.28 + 4.28i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65513967254283092814809464098, −9.969845411821918352746006213034, −8.806645407313771418211751394338, −7.928905749765744581113615307216, −6.70816814422038472294744712744, −6.06867964497307699459904264620, −4.76148167389048209678113945934, −3.93672619156913064412500454457, −2.95099526187028782656489358056, −0.44913274744502741940686587667,
0.72475383792399705208824218204, 2.46939383102299789928162859051, 3.94774641488819822134035723862, 4.99698127418523590990653420635, 6.16531712513452686143756105267, 6.96433263816476469122200500478, 7.58440171254717213223071575511, 8.856420848818889417824299827387, 9.590615364685459948576724567208, 10.74319799283760598473863223459