L(s) = 1 | + (−1.13 + 0.838i)2-s + (−0.589 − 2.19i)3-s + (0.593 − 1.90i)4-s + (−0.965 − 0.258i)5-s + (2.51 + 2.01i)6-s + (−1.24 − 2.33i)7-s + (0.924 + 2.67i)8-s + (−1.88 + 1.09i)9-s + (1.31 − 0.515i)10-s + (−1.17 − 4.38i)11-s + (−4.54 − 0.180i)12-s + (1.38 + 1.38i)13-s + (3.37 + 1.60i)14-s + 2.27i·15-s + (−3.29 − 2.26i)16-s + (−5.68 − 3.28i)17-s + ⋯ |
L(s) = 1 | + (−0.805 + 0.592i)2-s + (−0.340 − 1.26i)3-s + (0.296 − 0.954i)4-s + (−0.431 − 0.115i)5-s + (1.02 + 0.820i)6-s + (−0.472 − 0.881i)7-s + (0.327 + 0.945i)8-s + (−0.629 + 0.363i)9-s + (0.416 − 0.162i)10-s + (−0.354 − 1.32i)11-s + (−1.31 − 0.0521i)12-s + (0.384 + 0.384i)13-s + (0.902 + 0.429i)14-s + 0.587i·15-s + (−0.823 − 0.567i)16-s + (−1.37 − 0.796i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.114i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 - 0.114i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0222066 + 0.384980i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0222066 + 0.384980i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 - 0.838i)T \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 7 | \( 1 + (1.24 + 2.33i)T \) |
good | 3 | \( 1 + (0.589 + 2.19i)T + (-2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (1.17 + 4.38i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-1.38 - 1.38i)T + 13iT^{2} \) |
| 17 | \( 1 + (5.68 + 3.28i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-7.37 - 1.97i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.0300 - 0.0519i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.86 - 2.86i)T - 29iT^{2} \) |
| 31 | \( 1 + (1.91 - 3.32i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.13 - 7.97i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 1.20T + 41T^{2} \) |
| 43 | \( 1 + (4.82 - 4.82i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.96 + 6.86i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.87 - 0.502i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-4.74 + 1.27i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.77 + 6.63i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (6.63 - 1.77i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 4.38T + 71T^{2} \) |
| 73 | \( 1 + (-1.59 + 2.75i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-9.58 + 5.53i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.01 + 3.01i)T - 83iT^{2} \) |
| 89 | \( 1 + (7.43 + 12.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 16.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29254472288177621927295636677, −9.218713045355741761935976558830, −8.312429350860820528342636671167, −7.48790109992406490142113737883, −6.86597256470992456529885895614, −6.16566575531436337727130827107, −5.01405996582913685425169379905, −3.26513335212591432187473818083, −1.42572801776547827806115957323, −0.31014468659382725721946831345,
2.24059298980690700629560025356, 3.49838417947692390189395496999, 4.40558815053178914088707620384, 5.52960724910644928133152165122, 6.90292976355291632771245106702, 7.87117406040281795991739770754, 9.042922369396072196914274312163, 9.502454119210069766153772447320, 10.28711038110122419717679733913, 11.05243463701155149858177386731