L(s) = 1 | + (−1.39 + 0.208i)2-s + (0.308 + 1.14i)3-s + (1.91 − 0.584i)4-s + (0.965 + 0.258i)5-s + (−0.671 − 1.54i)6-s + (−2.40 − 1.10i)7-s + (−2.55 + 1.21i)8-s + (1.37 − 0.791i)9-s + (−1.40 − 0.160i)10-s + (−1.19 − 4.45i)11-s + (1.26 + 2.01i)12-s + (−3.04 − 3.04i)13-s + (3.59 + 1.04i)14-s + 1.19i·15-s + (3.31 − 2.23i)16-s + (−1.57 − 0.909i)17-s + ⋯ |
L(s) = 1 | + (−0.989 + 0.147i)2-s + (0.177 + 0.663i)3-s + (0.956 − 0.292i)4-s + (0.431 + 0.115i)5-s + (−0.273 − 0.630i)6-s + (−0.908 − 0.417i)7-s + (−0.902 + 0.430i)8-s + (0.457 − 0.263i)9-s + (−0.444 − 0.0506i)10-s + (−0.359 − 1.34i)11-s + (0.364 + 0.582i)12-s + (−0.844 − 0.844i)13-s + (0.960 + 0.279i)14-s + 0.307i·15-s + (0.829 − 0.559i)16-s + (−0.382 − 0.220i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.157 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.157 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.478821 - 0.408635i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.478821 - 0.408635i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 - 0.208i)T \) |
| 5 | \( 1 + (-0.965 - 0.258i)T \) |
| 7 | \( 1 + (2.40 + 1.10i)T \) |
good | 3 | \( 1 + (-0.308 - 1.14i)T + (-2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (1.19 + 4.45i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (3.04 + 3.04i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.57 + 0.909i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.17 + 1.11i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (3.32 + 5.75i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.52 + 3.52i)T - 29iT^{2} \) |
| 31 | \( 1 + (3.34 - 5.78i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.41 - 9.01i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 0.385T + 41T^{2} \) |
| 43 | \( 1 + (-2.99 + 2.99i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.73 + 8.20i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.29 + 1.15i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.66 + 0.446i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.95 + 7.28i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-15.6 + 4.18i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 4.16T + 71T^{2} \) |
| 73 | \( 1 + (-2.50 + 4.33i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.961 + 0.555i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.433 - 0.433i)T - 83iT^{2} \) |
| 89 | \( 1 + (5.26 + 9.11i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 11.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29082814200321141622270345344, −9.883323017448961258767808587678, −8.860160348183578432578877429389, −8.184300096406298832849917522138, −6.86688251007319943767361326011, −6.32309414141384119640576549220, −5.07799658137644368322298498359, −3.52612862989670730882815537849, −2.54620045898171333591480897324, −0.44904588467130368764151811392,
1.85602686087216906841388288069, 2.41820220544152614413007034262, 4.20254095122818952874104053681, 5.77908000165223822878629647038, 6.87317019224261630068331177709, 7.27839115424248272712407668583, 8.333218237134895224446979664059, 9.491323763776020047464488699859, 9.749905562919677689206745564812, 10.70680981812175998527559997775