L(s) = 1 | + (−1.13 + 0.838i)2-s + (−2.01 + 0.539i)3-s + (0.592 − 1.91i)4-s + (0.965 + 0.258i)5-s + (1.83 − 2.30i)6-s + (0.308 − 2.62i)7-s + (0.926 + 2.67i)8-s + (1.16 − 0.670i)9-s + (−1.31 + 0.515i)10-s + (−0.473 − 1.76i)11-s + (−0.163 + 4.16i)12-s + (0.888 + 0.888i)13-s + (1.85 + 3.25i)14-s − 2.08·15-s + (−3.29 − 2.26i)16-s + (−3.54 + 6.14i)17-s + ⋯ |
L(s) = 1 | + (−0.805 + 0.593i)2-s + (−1.16 + 0.311i)3-s + (0.296 − 0.955i)4-s + (0.431 + 0.115i)5-s + (0.750 − 0.939i)6-s + (0.116 − 0.993i)7-s + (0.327 + 0.944i)8-s + (0.386 − 0.223i)9-s + (−0.416 + 0.163i)10-s + (−0.142 − 0.532i)11-s + (−0.0471 + 1.20i)12-s + (0.246 + 0.246i)13-s + (0.495 + 0.868i)14-s − 0.537·15-s + (−0.824 − 0.566i)16-s + (−0.860 + 1.49i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.606 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.606 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0492461 - 0.0994838i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0492461 - 0.0994838i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 - 0.838i)T \) |
| 5 | \( 1 + (-0.965 - 0.258i)T \) |
| 7 | \( 1 + (-0.308 + 2.62i)T \) |
good | 3 | \( 1 + (2.01 - 0.539i)T + (2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (0.473 + 1.76i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.888 - 0.888i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.54 - 6.14i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.611 + 2.28i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (6.40 - 3.69i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.60 + 4.60i)T + 29iT^{2} \) |
| 31 | \( 1 + (-0.980 + 1.69i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5.76 + 1.54i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 4.87iT - 41T^{2} \) |
| 43 | \( 1 + (0.178 - 0.178i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.96 + 8.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.30 + 4.85i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (2.77 + 10.3i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.65 + 6.18i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (13.1 - 3.51i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 15.9iT - 71T^{2} \) |
| 73 | \( 1 + (-0.795 - 0.459i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.64 + 11.5i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.11 - 1.11i)T + 83iT^{2} \) |
| 89 | \( 1 + (0.683 - 0.394i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37032830509051689237860950761, −9.846207435743744530669816814291, −8.627989444044253072263268077299, −7.77366110469340224991409298135, −6.59547769712400439184603179459, −6.08490846739710404657041562360, −5.16518842925963890030449227396, −3.99836922847954798559270684002, −1.77113443861332710776896815864, −0.093215201820837211372330465479,
1.67479248138535250787258727535, 2.86301788887506448352850098965, 4.63421098656609956830495311510, 5.67316177118481317502301228927, 6.55815657874407215302789796368, 7.51026714170922266094635793731, 8.693036504577694334944763783782, 9.341671120762339842957268515179, 10.35164888207093057525079848468, 11.05028912677064788211261703286