L(s) = 1 | + (−1.10 − 0.888i)2-s + (−2.74 + 0.735i)3-s + (0.421 + 1.95i)4-s + (0.965 + 0.258i)5-s + (3.67 + 1.62i)6-s + (−2.61 − 0.407i)7-s + (1.27 − 2.52i)8-s + (4.39 − 2.53i)9-s + (−0.832 − 1.14i)10-s + (−0.724 − 2.70i)11-s + (−2.59 − 5.05i)12-s + (−0.667 − 0.667i)13-s + (2.51 + 2.77i)14-s − 2.84·15-s + (−3.64 + 1.64i)16-s + (−2.76 + 4.78i)17-s + ⋯ |
L(s) = 1 | + (−0.778 − 0.628i)2-s + (−1.58 + 0.424i)3-s + (0.210 + 0.977i)4-s + (0.431 + 0.115i)5-s + (1.49 + 0.664i)6-s + (−0.988 − 0.154i)7-s + (0.449 − 0.893i)8-s + (1.46 − 0.844i)9-s + (−0.263 − 0.361i)10-s + (−0.218 − 0.815i)11-s + (−0.749 − 1.45i)12-s + (−0.185 − 0.185i)13-s + (0.671 + 0.740i)14-s − 0.733·15-s + (−0.911 + 0.412i)16-s + (−0.669 + 1.16i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.943 - 0.331i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.943 - 0.331i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.427181 + 0.0728190i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.427181 + 0.0728190i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.10 + 0.888i)T \) |
| 5 | \( 1 + (-0.965 - 0.258i)T \) |
| 7 | \( 1 + (2.61 + 0.407i)T \) |
good | 3 | \( 1 + (2.74 - 0.735i)T + (2.59 - 1.5i)T^{2} \) |
| 11 | \( 1 + (0.724 + 2.70i)T + (-9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (0.667 + 0.667i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.76 - 4.78i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.11 + 4.17i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-1.18 + 0.683i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.12 - 5.12i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.06 - 3.57i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.70 - 1.52i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 0.599iT - 41T^{2} \) |
| 43 | \( 1 + (-0.155 + 0.155i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.08 - 8.81i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.98 + 11.1i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.48 - 12.9i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.916 + 3.41i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-11.4 + 3.06i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 9.19iT - 71T^{2} \) |
| 73 | \( 1 + (-2.36 - 1.36i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.15 - 7.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-12.3 - 12.3i)T + 83iT^{2} \) |
| 89 | \( 1 + (13.5 - 7.82i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 4.69T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87658280923850221182127448155, −10.15387114521730312264373454037, −9.401605337391826026753875048768, −8.424155143856905728502060995421, −6.90248154981498374952735855726, −6.41273508230495204471903292076, −5.32687530853682097768772616913, −4.08061371224814996544802727378, −2.83233047264089301640715404043, −0.855153281788679622713204074409,
0.56768738900091180730623748858, 2.20853286962489735903443824923, 4.62218173389736594760281739480, 5.53019614312392962929616156169, 6.27548898028665444066649985472, 6.91888688680641477133457384677, 7.72767118992193015406742175568, 9.224662388351643819737773550022, 9.840918973047741598341562258818, 10.53681245064796107694709744536