Properties

Label 2-560-1.1-c5-0-6
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $89.8149$
Root an. cond. $9.47707$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 25·5-s − 49·7-s − 234·9-s − 405·11-s − 391·13-s − 75·15-s + 999·17-s − 2.34e3·19-s − 147·21-s − 2.43e3·23-s + 625·25-s − 1.43e3·27-s + 8.25e3·29-s − 4.01e3·31-s − 1.21e3·33-s + 1.22e3·35-s − 7.04e3·37-s − 1.17e3·39-s + 3.33e3·41-s + 2.35e4·43-s + 5.85e3·45-s − 1.03e4·47-s + 2.40e3·49-s + 2.99e3·51-s + 3.08e3·53-s + 1.01e4·55-s + ⋯
L(s)  = 1  + 0.192·3-s − 0.447·5-s − 0.377·7-s − 0.962·9-s − 1.00·11-s − 0.641·13-s − 0.0860·15-s + 0.838·17-s − 1.48·19-s − 0.0727·21-s − 0.957·23-s + 1/5·25-s − 0.377·27-s + 1.82·29-s − 0.750·31-s − 0.194·33-s + 0.169·35-s − 0.845·37-s − 0.123·39-s + 0.309·41-s + 1.93·43-s + 0.430·45-s − 0.681·47-s + 1/7·49-s + 0.161·51-s + 0.150·53-s + 0.451·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(89.8149\)
Root analytic conductor: \(9.47707\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8672905001\)
\(L(\frac12)\) \(\approx\) \(0.8672905001\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p^{2} T \)
7 \( 1 + p^{2} T \)
good3 \( 1 - p T + p^{5} T^{2} \)
11 \( 1 + 405 T + p^{5} T^{2} \)
13 \( 1 + 391 T + p^{5} T^{2} \)
17 \( 1 - 999 T + p^{5} T^{2} \)
19 \( 1 + 2342 T + p^{5} T^{2} \)
23 \( 1 + 2430 T + p^{5} T^{2} \)
29 \( 1 - 8259 T + p^{5} T^{2} \)
31 \( 1 + 4016 T + p^{5} T^{2} \)
37 \( 1 + 7042 T + p^{5} T^{2} \)
41 \( 1 - 3336 T + p^{5} T^{2} \)
43 \( 1 - 23518 T + p^{5} T^{2} \)
47 \( 1 + 10317 T + p^{5} T^{2} \)
53 \( 1 - 3084 T + p^{5} T^{2} \)
59 \( 1 - 18816 T + p^{5} T^{2} \)
61 \( 1 - 21668 T + p^{5} T^{2} \)
67 \( 1 + 52124 T + p^{5} T^{2} \)
71 \( 1 - 28560 T + p^{5} T^{2} \)
73 \( 1 + 70342 T + p^{5} T^{2} \)
79 \( 1 + 58823 T + p^{5} T^{2} \)
83 \( 1 + 756 T + p^{5} T^{2} \)
89 \( 1 - 135384 T + p^{5} T^{2} \)
97 \( 1 - 110435 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15192115795869857838353514070, −8.948314167369957459276500043997, −8.208200243308395796302434846113, −7.47129907455081247803957419187, −6.28922551278524797523438370732, −5.39751006135097991580984639624, −4.28094725904091955264225850362, −3.09567909604928904139392292701, −2.26475194427441717514435378588, −0.42496416859401474821204349671, 0.42496416859401474821204349671, 2.26475194427441717514435378588, 3.09567909604928904139392292701, 4.28094725904091955264225850362, 5.39751006135097991580984639624, 6.28922551278524797523438370732, 7.47129907455081247803957419187, 8.208200243308395796302434846113, 8.948314167369957459276500043997, 10.15192115795869857838353514070

Graph of the $Z$-function along the critical line