Properties

Label 2-560-1.1-c5-0-38
Degree $2$
Conductor $560$
Sign $-1$
Analytic cond. $89.8149$
Root an. cond. $9.47707$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11·3-s − 25·5-s + 49·7-s − 122·9-s − 83·11-s − 83·13-s + 275·15-s − 177·17-s + 2.08e3·19-s − 539·21-s + 3.17e3·23-s + 625·25-s + 4.01e3·27-s − 8.68e3·29-s − 1.63e3·31-s + 913·33-s − 1.22e3·35-s + 4.29e3·37-s + 913·39-s + 2.35e3·41-s − 8.73e3·43-s + 3.05e3·45-s + 3.64e3·47-s + 2.40e3·49-s + 1.94e3·51-s + 3.32e4·53-s + 2.07e3·55-s + ⋯
L(s)  = 1  − 0.705·3-s − 0.447·5-s + 0.377·7-s − 0.502·9-s − 0.206·11-s − 0.136·13-s + 0.315·15-s − 0.148·17-s + 1.32·19-s − 0.266·21-s + 1.24·23-s + 1/5·25-s + 1.05·27-s − 1.91·29-s − 0.305·31-s + 0.145·33-s − 0.169·35-s + 0.516·37-s + 0.0961·39-s + 0.218·41-s − 0.720·43-s + 0.224·45-s + 0.240·47-s + 1/7·49-s + 0.104·51-s + 1.62·53-s + 0.0924·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(89.8149\)
Root analytic conductor: \(9.47707\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 560,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p^{2} T \)
7 \( 1 - p^{2} T \)
good3 \( 1 + 11 T + p^{5} T^{2} \)
11 \( 1 + 83 T + p^{5} T^{2} \)
13 \( 1 + 83 T + p^{5} T^{2} \)
17 \( 1 + 177 T + p^{5} T^{2} \)
19 \( 1 - 2082 T + p^{5} T^{2} \)
23 \( 1 - 3170 T + p^{5} T^{2} \)
29 \( 1 + 8681 T + p^{5} T^{2} \)
31 \( 1 + 1636 T + p^{5} T^{2} \)
37 \( 1 - 4298 T + p^{5} T^{2} \)
41 \( 1 - 2356 T + p^{5} T^{2} \)
43 \( 1 + 8738 T + p^{5} T^{2} \)
47 \( 1 - 3641 T + p^{5} T^{2} \)
53 \( 1 - 33268 T + p^{5} T^{2} \)
59 \( 1 - 30968 T + p^{5} T^{2} \)
61 \( 1 - 4560 T + p^{5} T^{2} \)
67 \( 1 + 564 p T + p^{5} T^{2} \)
71 \( 1 - 59304 T + p^{5} T^{2} \)
73 \( 1 + 8910 T + p^{5} T^{2} \)
79 \( 1 + 27589 T + p^{5} T^{2} \)
83 \( 1 + 67676 T + p^{5} T^{2} \)
89 \( 1 - 10700 T + p^{5} T^{2} \)
97 \( 1 - 65075 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.529644084356057352292378550857, −8.663438459030118667228494025299, −7.63990485990199462537927448629, −6.90295383577620248334265382466, −5.60026304184630786692771900917, −5.12226615634501502332815133534, −3.83238861987435720654826558375, −2.67432486975539993859751259551, −1.12775448003691978491480585796, 0, 1.12775448003691978491480585796, 2.67432486975539993859751259551, 3.83238861987435720654826558375, 5.12226615634501502332815133534, 5.60026304184630786692771900917, 6.90295383577620248334265382466, 7.63990485990199462537927448629, 8.663438459030118667228494025299, 9.529644084356057352292378550857

Graph of the $Z$-function along the critical line