L(s) = 1 | + 4.65·3-s − 5·5-s + 7·7-s − 5.31·9-s + 52.2·11-s + 30.6·13-s − 23.2·15-s + 37.2·17-s − 80.2·19-s + 32.5·21-s − 25.8·23-s + 25·25-s − 150.·27-s + 20.9·29-s + 314.·31-s + 243.·33-s − 35·35-s + 197.·37-s + 142.·39-s + 11.3·41-s + 33.8·43-s + 26.5·45-s + 361.·47-s + 49·49-s + 173.·51-s + 153.·53-s − 261.·55-s + ⋯ |
L(s) = 1 | + 0.896·3-s − 0.447·5-s + 0.377·7-s − 0.196·9-s + 1.43·11-s + 0.654·13-s − 0.400·15-s + 0.531·17-s − 0.968·19-s + 0.338·21-s − 0.234·23-s + 0.200·25-s − 1.07·27-s + 0.134·29-s + 1.82·31-s + 1.28·33-s − 0.169·35-s + 0.875·37-s + 0.586·39-s + 0.0432·41-s + 0.119·43-s + 0.0880·45-s + 1.12·47-s + 0.142·49-s + 0.475·51-s + 0.396·53-s − 0.640·55-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(560s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.834597996 |
L(21) |
≈ |
2.834597996 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+5T |
| 7 | 1−7T |
good | 3 | 1−4.65T+27T2 |
| 11 | 1−52.2T+1.33e3T2 |
| 13 | 1−30.6T+2.19e3T2 |
| 17 | 1−37.2T+4.91e3T2 |
| 19 | 1+80.2T+6.85e3T2 |
| 23 | 1+25.8T+1.21e4T2 |
| 29 | 1−20.9T+2.43e4T2 |
| 31 | 1−314.T+2.97e4T2 |
| 37 | 1−197.T+5.06e4T2 |
| 41 | 1−11.3T+6.89e4T2 |
| 43 | 1−33.8T+7.95e4T2 |
| 47 | 1−361.T+1.03e5T2 |
| 53 | 1−153.T+1.48e5T2 |
| 59 | 1−616T+2.05e5T2 |
| 61 | 1−15.2T+2.26e5T2 |
| 67 | 1−166.T+3.00e5T2 |
| 71 | 1−952T+3.57e5T2 |
| 73 | 1+148.T+3.89e5T2 |
| 79 | 1+857.T+4.93e5T2 |
| 83 | 1+660.T+5.71e5T2 |
| 89 | 1+45.7T+7.04e5T2 |
| 97 | 1−1.68e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28106354695442536119364281249, −9.249509787807976425309992784933, −8.524353351140309678324763188754, −7.984567827427055002540320018741, −6.79548820583060812781754778118, −5.87775508944929476062047480217, −4.35857900253479350063769821294, −3.65145473247428242929094068901, −2.43721924732272623395284712248, −1.04039831827976666961139235274,
1.04039831827976666961139235274, 2.43721924732272623395284712248, 3.65145473247428242929094068901, 4.35857900253479350063769821294, 5.87775508944929476062047480217, 6.79548820583060812781754778118, 7.984567827427055002540320018741, 8.524353351140309678324763188754, 9.249509787807976425309992784933, 10.28106354695442536119364281249