L(s) = 1 | + (−0.242 − 1.39i)2-s + (−2.13 − 1.22i)3-s + (−1.88 + 0.674i)4-s + (1.28 − 0.742i)5-s + (−1.19 + 3.26i)6-s + (0.129 − 2.64i)7-s + (1.39 + 2.45i)8-s + (1.52 + 2.64i)9-s + (−1.34 − 1.61i)10-s + (4.37 + 2.52i)11-s + (4.84 + 0.878i)12-s − 2.58i·13-s + (−3.71 + 0.459i)14-s − 3.65·15-s + (3.08 − 2.54i)16-s + (−0.629 + 1.09i)17-s + ⋯ |
L(s) = 1 | + (−0.171 − 0.985i)2-s + (−1.22 − 0.710i)3-s + (−0.941 + 0.337i)4-s + (0.575 − 0.332i)5-s + (−0.489 + 1.33i)6-s + (0.0490 − 0.998i)7-s + (0.493 + 0.869i)8-s + (0.508 + 0.880i)9-s + (−0.425 − 0.510i)10-s + (1.31 + 0.760i)11-s + (1.39 + 0.253i)12-s − 0.717i·13-s + (−0.992 + 0.122i)14-s − 0.943·15-s + (0.772 − 0.635i)16-s + (−0.152 + 0.264i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.599 + 0.800i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.599 + 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.260545 - 0.521080i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.260545 - 0.521080i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.242 + 1.39i)T \) |
| 7 | \( 1 + (-0.129 + 2.64i)T \) |
good | 3 | \( 1 + (2.13 + 1.22i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.28 + 0.742i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.37 - 2.52i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 2.58iT - 13T^{2} \) |
| 17 | \( 1 + (0.629 - 1.09i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.68 - 1.54i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.697 - 1.20i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 0.638iT - 29T^{2} \) |
| 31 | \( 1 + (-1.82 + 3.16i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.21 + 3.01i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 6.36T + 41T^{2} \) |
| 43 | \( 1 + 1.02iT - 43T^{2} \) |
| 47 | \( 1 + (-5.48 - 9.49i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.99 + 2.88i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.01 - 1.74i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (11.1 - 6.44i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.443 + 0.256i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.41T + 71T^{2} \) |
| 73 | \( 1 + (4.94 - 8.56i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.35 + 7.54i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 2.97iT - 83T^{2} \) |
| 89 | \( 1 + (-1.29 - 2.23i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 1.57T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.51070269117649338975347692414, −13.22917084105403462517219365502, −12.55441080659480700043459456589, −11.49068222038303226610359570007, −10.51789614269602631827576020433, −9.349200257525703165581913937698, −7.49467039967980964434217327977, −5.97110231946454570739929281401, −4.32183072717123646166876550521, −1.32682520934264787035618537739,
4.50827714234194357453067902611, 5.90971479269990985807710879023, 6.51069553913320388531566593225, 8.749629292410079874905601897490, 9.684284134449868208117465493461, 11.02475696554353353040410043198, 12.11991329293397220395978481633, 13.81147473559183785985719821243, 14.81230152560918814625734736010, 15.90683368546294186318999136781