| L(s)  = 1 | + (0.804 + 1.16i)2-s   + (0.591 − 0.341i)3-s   + (−0.706 + 1.87i)4-s   + (−2.80 − 1.61i)5-s   + (0.872 + 0.413i)6-s   + (1.47 − 2.19i)7-s   + (−2.74 + 0.682i)8-s   + (−1.26 + 2.19i)9-s   + (−0.371 − 4.56i)10-s   + (2.08 − 1.20i)11-s   + (0.220 + 1.34i)12-s   + 3.09i·13-s   + (3.74 − 0.0456i)14-s   − 2.21·15-s   + (−3.00 − 2.64i)16-s   + (−1.97 − 3.42i)17-s  + ⋯ | 
| L(s)  = 1 | + (0.568 + 0.822i)2-s   + (0.341 − 0.197i)3-s   + (−0.353 + 0.935i)4-s   + (−1.25 − 0.724i)5-s   + (0.356 + 0.168i)6-s   + (0.558 − 0.829i)7-s   + (−0.970 + 0.241i)8-s   + (−0.422 + 0.731i)9-s   + (−0.117 − 1.44i)10-s   + (0.629 − 0.363i)11-s   + (0.0637 + 0.388i)12-s   + 0.858i·13-s   + (0.999 − 0.0122i)14-s   − 0.570·15-s   + (−0.750 − 0.661i)16-s   + (−0.479 − 0.830i)17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.953947 + 0.381943i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.953947 + 0.381943i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 + (-0.804 - 1.16i)T \) | 
|  | 7 | \( 1 + (-1.47 + 2.19i)T \) | 
| good | 3 | \( 1 + (-0.591 + 0.341i)T + (1.5 - 2.59i)T^{2} \) | 
|  | 5 | \( 1 + (2.80 + 1.61i)T + (2.5 + 4.33i)T^{2} \) | 
|  | 11 | \( 1 + (-2.08 + 1.20i)T + (5.5 - 9.52i)T^{2} \) | 
|  | 13 | \( 1 - 3.09iT - 13T^{2} \) | 
|  | 17 | \( 1 + (1.97 + 3.42i)T + (-8.5 + 14.7i)T^{2} \) | 
|  | 19 | \( 1 + (-2.33 - 1.35i)T + (9.5 + 16.4i)T^{2} \) | 
|  | 23 | \( 1 + (1.37 - 2.37i)T + (-11.5 - 19.9i)T^{2} \) | 
|  | 29 | \( 1 - 2.01iT - 29T^{2} \) | 
|  | 31 | \( 1 + (-1.10 - 1.91i)T + (-15.5 + 26.8i)T^{2} \) | 
|  | 37 | \( 1 + (-4.30 - 2.48i)T + (18.5 + 32.0i)T^{2} \) | 
|  | 41 | \( 1 + 2.11T + 41T^{2} \) | 
|  | 43 | \( 1 + 11.5iT - 43T^{2} \) | 
|  | 47 | \( 1 + (-3.31 + 5.74i)T + (-23.5 - 40.7i)T^{2} \) | 
|  | 53 | \( 1 + (-2.23 + 1.29i)T + (26.5 - 45.8i)T^{2} \) | 
|  | 59 | \( 1 + (10.6 - 6.13i)T + (29.5 - 51.0i)T^{2} \) | 
|  | 61 | \( 1 + (7.54 + 4.35i)T + (30.5 + 52.8i)T^{2} \) | 
|  | 67 | \( 1 + (-5.01 + 2.89i)T + (33.5 - 58.0i)T^{2} \) | 
|  | 71 | \( 1 - 6.64T + 71T^{2} \) | 
|  | 73 | \( 1 + (-4.77 - 8.27i)T + (-36.5 + 63.2i)T^{2} \) | 
|  | 79 | \( 1 + (0.838 - 1.45i)T + (-39.5 - 68.4i)T^{2} \) | 
|  | 83 | \( 1 + 6.47iT - 83T^{2} \) | 
|  | 89 | \( 1 + (6.98 - 12.1i)T + (-44.5 - 77.0i)T^{2} \) | 
|  | 97 | \( 1 + 1.37T + 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.46613373779745623669060178907, −14.11726999185951822939095129095, −13.63636895054855778329494541082, −12.08114503732660925245169197148, −11.31908299054326831082300387313, −8.934166148338144865198683193169, −7.993450539690396583703630937569, −7.08804864379128851419780938401, −4.98371421535595856702833118562, −3.84261663580936754277667566102, 
2.96164886831542471105044426293, 4.27675426981475576534549541065, 6.17873705041384779909036676041, 8.103577361624593338096473943352, 9.391931185142906433250929647582, 10.93245395930382222426295018590, 11.73086345513602739966929778280, 12.57540177689535561168661273329, 14.29882268124607359919298376859, 15.07202954742350747115027865598
